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Abstract 
 

Software developers have long known that project 

success requires a robust understanding of both tech-

nical and social linkages. However, research has 

largely considered these independently. Research on 

networks of technical artifacts focuses on techniques 

like code analysis or mining project archives. Social 

network analysis has been used to capture information 

about relations among people. Yet, each type of infor-

mation is often far more useful when combined, as 

when the “goodness” of social networks is judged by 

the patterns of dependencies in the technical artifacts. 

To bring such information together, we have developed 

Tesseract, an interactive exploratory environment that 

utilizes cross-linked displays to visualize the myriad 

relationships between artifacts, developers, bugs, and 

communications. We evaluated Tesseract by (1) dem-

onstrating its feasibility with GNOME project data (2) 

assessing its usability via informal user evaluations, 

and (3) verifying its suitability for the open source 

community via semi-structured interviews.  

 

1. Introduction 
 

Development environments increasingly reflect the 

fact that artifacts, developers, and tasks are intrinsically 

bound together in a software project. While editing a 

file of source code, for example, many other artifacts 

are likely to be relevant. Considerable research effort 

has focused on using a variety of techniques such as 

static code analyses [1, 2], task definition [20], text 

analysis [7], and records of prior developer activity to 

identify these related artifacts [10] and make them eas-

ily accessible when they are likely to be useful. 

There is also an increasing interest in understanding 

and using relationships among individuals in a team to 

improve software development. Research has focused 

on increasing awareness among developers about each 

other’s relevant activities [17], and on using the social 

relations among developers to identify implicit teams 

[4] or to predict software defects [21]. Such efforts 

often draw on social network analysis (SNA). 

So far, these two streams of research have mostly 

been separate from each other. Yet, both of these sets 

of relationships – the technical and the social – become 

much more useful when they are considered together. It 

is difficult, for example, to judge whether a given pat-

tern of communication is adaptive or dysfunctional 

without understanding the dependencies in the tasks 

being undertaken by the communicators. For instance, 

developers who are modifying interdependent code 

modules but not communicating may introduce poten-

tial future integration problems. Research has shown 

that development work proceeds more efficiently when 

patterns of communication match the logical depend-

encies in the code that is being modified [6].   

This match between the networks of artifacts and the 

networks of people, has a long history [19, 23], but has 

only recently become a focus of research in software 

engineering. Understanding and using analysis showing 

the degree of match, or congruence, between the social 

and technical aspects of a project is vital for supporting 

collaboration and coordination on software projects [5, 

6]. While developers are intuitively aware of this, and 

software architects actively engage in social engineer-

ing while creating architectural design [15], we have 

relatively few tools or practices that provide socio-

technical information in useful, actionable ways.  

The need for such tools is reflected by findings from 

field studies, which have shown that developers find it 

difficult to decipher how their work binds them with 

that of others. Consequently, they spend a significant 

portion of their time in managing their changes [9, 24] 

or in finding the right person with whom to communi-



cate [16]. Our own semi-structured interviews of open 

source developers confirm this need and have guided 

the design of Tesseract, a socio-technical dependency 

browser that is specifically constructed to: 

• Simultaneously show the social as well as technical 

relationships among different project entities (e.g., 

developers, communication, code, and bugs). 

• Cross-link and enable interactive exploration of 

these relationships and how they evolve.  

• Highlight (mis)matches among technical dependen-

cies and communication patterns of developers. 

More specifically, Tesseract analyzes different project 

archives to determine the numerous socio-technical 

relationships in a project. It then visualizes these rela-

tionships via four juxtaposed displays that are cross-

linked to enable in-depth, multi-perspective investiga-

tion for a user-selected time period (see Figure 1). 

Constructing a system like Tesseract raises several 

questions such as, which dependency analysis best re-

flects technical dependencies (code-based analysis or 

files that are frequently committed together), which 

project entities really bind the social and technical as-

pects of a project, which social network analyses work 

best for clustering data, scalability, and the general 

effectiveness of the tool in helping developers under-

stand socio-technical dependencies in a project. The 

aim of this paper is not to provide an absolute answer 

to all of the questions, but to serve as an initial investi-

gation into the feasibility of creating a project explora-

tion tool that focuses on the socio-technical space. 

To do so, we fist demonstrated the feasibility of our 

approach by using Tesseract to analyze and visualize a 

large open source project archive. We then conducted 

formative evaluations of Tesseract through informal 

user evaluations that illustrated the ease of use afforded 

by the tool. Finally, we conducted interviews with open 

source developers, where we demonstrated Tesseract 

and obtained their feedback on its features and devel-

opment scenarios where the tool would be useful. 

The remainder of this paper is organized as follows. 

Section 2 motivates the design of Tesseract by building 

on case studies that reveal the need of an exploratory 

environment like Tesseract and lessons learned from 

existing tools. In Section 3, we present Tesseract fol-

lowed by two usage scenarios. We end the section with 

a description of our design principles and implementa-

tion techniques. Section 4 discusses our formative 

evaluations of Tesseract and we conclude in Section 5 

discussing potential future work. 

 

2. Informing the design of Tesseract 
 

We informed the design of Tesseract by building 

on: (1) case studies that highlight problems of manag-

Figure 1. Tesseract UI showing four displays: (a) project activity pane with code commits (top) and 

communication (bottom), (b) file network, (c) developer communication network, and (d) issues pane. 
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ing change and communication in software teams, and 

(2) lessons learned from coordination tools that attempt 

to address these problems. Our interviews with open 

source developers helped us better understand the na-

ture of these problems and identify tool features that 

would be useful in their development environment. 

 

2.1. Problems of change and communication 
 

We motivate our work through four case studies. 

The first study by de Souza and Redmiles [9] observed 

two software teams to understand how they managed 

the impact of their changes. The authors observed that 

one team was highly disciplined and managed change 

by: (1) rigorously broadcasting email of impending 

changes and (2) reading email to create an awareness 

of “who was working on what”. While this practice 

worked well, it involved significant effort in writing 

and reading email. The other team was larger and less 

disciplined when informing others of changes. This 

resulted in team members having much difficulty in 

identifying the impact of their changes on others and 

vice versa. Further, the use of multiple databases for 

maintaining development and communication records 

caused duplication of information and overwhelmed 

the users.  

The second study by Cataldo et al. [6] analyzed pro-

ject data of a large software development team to un-

derstand the coordination needs arising because of un-

derlying technical dependencies in work. They com-

pared social networks created because of technical de-

pendencies among artifacts (coordination requirements) 

with the communication patterns in the team. It was 

found that teams with high congruence (match between 

the coordination requirements and communication pat-

terns) took less time to complete tasks. They also found 

that the coordination requirements evolved over time, 

requiring developers to correctly identify the new rela-

tionships and people with whom to communicate [5]. 

The third study by Sosa et al. [27] uses a similar 

technique as Cataldo et al. to find the degree to which 

team interactions match the way components are cou-

pled because of shared interfaces (alignment matrix). 

They found that developers and engineers were 

unlikely to be aware of interface changes, especially 

when such changes occurred across system or organiza-

tional boundaries. Their recommendation to overcome 

these problems is that managers create an alignment 

matrix to align their team interactions with the way 

components are associated via shared interfaces.  

Finally, Gutwin et al. [18] investigated collabora-

tion mechanisms in open source development. They 

found that text communications (mailing list and IRC 

chat) were the primary mechanisms for maintaining 

awareness of “who is doing what” and expertise loca-

tion. The community was sufficiently disciplined to 

generate and maintain public communication archives, 

thereby enabling all developers on the lists to become 

peripheral participants in each others’ conversation. 

However, developers often found it difficult to remain 

up-to-date with all communications in the different 

lists. Further, splitting communication among email, 

chat, and issue trackers caused information duplication 

and situations where developers missed important in-

formation. 

These studies reflect the different needs faced by 

developers and managers. Further, the work by Gutwin 

et al. shows that these needs are similar between com-

mercial and open source projects. We developed Tes-

seract, an interactive exploratory environment to enable 

developers to investigate the complex relationships 

among code, developers, communication, and bugs 

and, thereby, help them align their interactions with the 

technical dependencies in their work. 

 

2.2. Current tool support 
 

There exists considerable tool support for analyzing 

technical dependencies in a project via code analysis 

techniques [2]. Similarly, there has been extensive 

work on capturing the social structure of an organiza-

tion based on the interactions among individuals [28]. 

While each analysis type provides important informa-

tion about the project, it can be much more useful when 

combined together. Emerging research following this 

premise has produced a suite of tools. For instance, 

tools in the computer-supported cooperative work 

community attempt to help developers become aware 

of ongoing project activities as they occur [17]. The 

hypothesis is that developers can better coordinate their 

work with that of others’ by leveraging the contextual 

awareness of ongoing changes in the project [3, 12]. 

Tools such as Tukan [26], CollabVS [11], and Palantír 

[25] perform basic code analysis to identify dependen-

cies among artifacts and warn developers when these 

dependencies are changed by another.  

Project exploration tools follow a similar approach, 

but have slightly different goals. Many of these tools 

use the socio-technical relationship model created from 

code contributions, visitations, or dependencies to help 

a developer with their work. Expertise Browser [22], 

for instance, uses information about developers’ past 

code contributions (both frequency and lines-of-code 

committed) to determine their expertise. However, it 

was noted that Expertise Browser was often used for 

other purposes such as obtaining an overview of pro-



ject activities or finding recent changes to a particular 

code module. Team Tracks [10] attempts to familiarize 

new developers with the code base by flagging parts of 

code that have been frequently visited (signifying their 

importance) and parts that are visited in succession 

(depicting their logical coupling). Ariadne [8] uses call 

graph analysis to identify artifacts dependencies, which 

are combined with information of code contributions to 

model socio-technical relations in a project. 

In summary, current tools use different techniques to 

decipher code relationships, information of which is 

then used to facilitate social interactions in a team. 

However, these tools typically: (1) use a single data 

source – primarily the code archive, (2) do not compare 

or contrast the model created by technical dependen-

cies with communication patterns, and (3) do not allow 

interactive exploration of the underlying socio-

technical model. Further, the Expertise Browser study 

indicates that developers and managers are eager to 

investigate the different relationships existing in their 

projects to better inform their work. 

To the best of our knowledge, CodeSaw [13] is the 

only tool that considers communication records in ad-

dition to code archives. Both of which are displayed 

juxtaposed in a time series. While such a display helps 

a user link peaks in contributions with spikes in email 

communications (or lack thereof) to discern develop-

ment practices, it fails to map social interactions with 

specific technical dependencies.  

 

3. Tesseract 
 

Tesseract provides an interactive exploratory envi-

ronment which developers can investigate relationships 

across code, bugs, email and bug discussions, and de-

velopers’ contributions. It consists of four cross-linked 

panes: 

• The Project activity pane (Figure 1(a)) displays the 

overall activities in a project (code commits at the 

top and communication at the bottom) as a time se-

ries display. It allows users to select a time period 

for their investigation, which is reflected in all other 

panes. 

• The Files network pane (Figure 1(b)) displays arti-

fact associations as a network, which is created by 

linking files that are frequently changed together. 

The thickness of the edges indicates the number of 

times pairs of files have been committed together 

and can be thresholded by the user. Textual listing 

of the file names allows quick identification of spe-

cific files by name. 

• The Developers network pane (Figure 1(c)) displays 

developers and links among them. Two developers 

are linked if they either edited the same artifact or 

interdependent artifacts. The edges in this network 

are colored green when there exists a requirement to 

communicate and developers have done so via ei-

ther email or the bug repository (e.g., comments or 

activities in Bugzilla); otherwise the edges are col-

ored red. The thickness of the edges is based on the 

number of times developers communicated. Similar 

to the file network, a textual listing of the developer 

names is provided. 

• The Issues pane (Figure 1(d)) displays defect or 

feature related information as a stacked area chart, 

as well as, in a detailed listing. 

Tesseract enables exploration of project data and its 

underlying relationships in multiple ways. First, click-

ing on an entity (graph element or line in the textual 

lists) will highlight that entity and will also show all 

related entities in the other panes. For example, select-

ing a node in the developer network highlights all the 

files and bugs with which the developer has been in-

volved during the given time frame. Second, hovering 

over a node in either the ‘Files’ or ‘Developers’ net-

work, displays additional information about the node 

and highlights its neighbors. Third, a user can pan 

(background drag), zoom (wheel), and move individual 

nodes in the graph. Fourth, search functionality allows 

users to quickly find an entity when they know its full 

or partial details. Finally, Tesseract allows users to 

change the perspective of their investigation by drilling 

down on specific artifact(s) and developer(s). For in-

stance, a user might drill-down to view a subset of arti-

facts to find which other developers have edited them. 

 

3.1. Usage Scenarios 
 

Tesseract is designed to facilitate the investigation 

of a particular event or identification of development 

patterns. Here we present two example scenarios of 

each type. The first scenario reflects a common prac-

tice by new developers and was mentioned multiple 

times in our interviews. The second scenario presents 

an interesting insight into the research hypothesis on 

congruence [5]. Both examples reflect real project data 

from a GNOME project with anonimyzed developer 

names.  

Investigating an event: 

Interactive exploration of the underlying socio-

technical space in a project allows a developer to draw 

upon their (possibly incomplete or incorrect) memory 

and either confirm it, refute it, or supplement it with 

adaptive analysis of only the portions of the data set 

that they consider relevant.  



Assume a hypothetical case where Billy Mick, a 

new developer, is assigned to fix a particular bug re-

garding the display of “minutes remaining” in a play-

list. From reading the mailing lists, he remembers that 

Glenda Whyte had worked on a related feature – add-

ing “minutes” to the product. He decides to investigate 

that feature to obtain a better understanding of the files 

and people that were involved. To do so, Billy, changes 

the time frame in Tesseract (Figure 1(a)) to a time of an 

earlier activity spurt. He finds the feature that Glenda 

had added (Bug ID 9028 in Figure 1 (d)) and selects it. 

This highlights the two developers and four artifacts 

that are associated with that bug id (shown in yellow in 

Figure 1 (b) & (c)).  

He realizes that his bug fix would at least involve 

these four files. Additionally, he notices that another 

developer – Lynda Finney, who is not part of the core 

group – actually worked on three of those files in rela-

tion to this feature. Because of the red line between 

Glenda and Lynda, Billy realizes that these developers 

have not communicated with each other in the selected 

time frame. He supposes that Alicia Dimaggio, the cur-

rent project lead, may have mediated between Glenda 

and Lynda, as both developers have green edges with 

Alicia. To ensure that he has a complete picture of de-

velopment activities regarding the feature, Billy de-

cides to contact Lynda. 

Deciphering patterns: 
Figure 2 provides two snapshots of project history, 

each presenting the file network, developer network, 

and issues data during two distinct time periods. These 

periods were chosen because they contained high bursts 

of activities. We can make the following observations 

from Figure 2(a), which shows the earlier activity 

burst: (1) Stephen Walther is the primary contributor 

having changed literally every file; (2) while Stephen is 

in contact with most other developers (green lines from 

Stephen to other developers), very few developers are 

communicating among themselves (red lines); (3) the 

file network is densely connected; and (4) this time 

period is marked with a continuously increasing list of 

open issues. 

When we investigate the second time period, as 

shown in Figure 2(b), we find that: (1) Alicia Di-

Maggio is now the primary contributor; (2) she is 

communicating with other contributors and there is 

sufficient communications among the other core con-

tributors; (3) the file network is sparse and displays a 

discernable structure; and (4) the list of open issues is 

decreasing. 

These two contrasting patterns do not necessarily 

imply any causal relationships between communication 

patterns and/or a denser file network and/or an increase 

in open issues, but certainly provide interesting insights 

into the project that merits further investigation. Read-

ers can investigate these scenarios further through our 

tool that is available at http://crc.maccherone.com/ tes-

seract/. 

 

3.2. Information flow 
 

Figure 3 presents the information flow underlying 

Tesseract. We have specifically designed Tesseract to 

separate the data collection and extraction from the 

analysis and visualization. The former functionalities 

are carried out at the server side, while the latter are 

part of a rich web client. Designing Tesseract as a web 

application removes the need for installing any soft-

ware on the client side, which makes it easy for manag-

ers to quickly use the tool, as well as, making it feasible 

for adoption by the open source community.  

Collecting: Best practices for most open source and 

distributed development projects use three major tools 

to manage software development: a source code man-

agement system (SCM), one or more project mailing 

lists, and a common bug or issue tracking database. 

Most activities involving code and issues are archived 

by either SCM systems or issue trackers. Open source 

projects typically maintain and make publicly available 

a rich history of their communication records. Tesse-

ract relies upon such prior collection of project data. 

We note that in commercial software development, 

project mailing list or other communication records 

(a) 

(b) 

Figure 2. Contrasting development patterns. 



may not be available. In such conditions, the developer 

networks will either be partial or unavailable. 

Extracting and Cross-linking: Different projects use 

different systems for their code and bug archival. For 

example, a project may use CVS instead of Perforce as 

their configuration management system or may use 

Trac instead of Bugzilla for their issue/defect tracking. 

In order to ensure that Tesseract is able to work with a 

wide set of projects as well as data that is already ar-

chived by researchers, we employ an additional extrac-

tion and cross-linking step.  

Depending upon the tools and practices of a particu-

lar project, data linking different project entities may 

exist in different forms in the project archives. In many 

cases, these links are explicit. As in the case of associ-

ating which developers have committed which files. In 

other cases, the links may need to be deduced heuristi-

cally, as in the case of identifying associations among 

artifacts. Finally, in some cases, team practices call for 

the recording of cross-links in data. For example, team 

practices commonly call for the bug-id to be listed in 

the commit log of a change set that fixed a particular 

bug. A critical requirement of Tesseract is the ability to 

identify individuals across multiple databases and dis-

cover which files were changed with which commits. 

We note that in some cases, additional effort may be 

needed to create these links, but we believe that the 

benefits provided by Tesseract will outweigh these 

costs. Creating richer information archives, by captur-

ing discussions via email, chat, or wikis can help the 

team build a better understanding of their project. 

Tesseract uses an extractor component (see Figure 

4) to pull project data from its original locations and 

cross-link it where applicable. This cross-linked data is 

then stored in a small set of XML files. The schema of 

which is straight forward and enumerates the informa-

tion we need to analyze and link the different relation-

ships between artifacts, developers, and bugs or issues. 

We note that the extractor component is specific to a 

particular set of tools and practices and may require re-

implementation for different projects. But once this 

step is performed, the rest of Tesseract is independent 

of the underlying data collection process. 

Analyzing: The XML files generated by the extractor 

are analyzed on the rich web client to identify (1) rela-

tionships among code, developer, and bugs, (2) coordi-

nation requirements among team members that may 

arise because of the underlying technical dependencies 

in their work, (3) communication patterns among de-

velopers, and (4) the match between the coordination 

requirements and the communication patterns.  

We treat artifacts that are frequently committed to-

gether to be logically associated with each other. We 

do so because artifacts that are edited or created as part 

of a particular task are often checked-in together as a 

change set [29]. Such practices have become norms in 

most organizations and software teams. This method of 

deducing dependencies works in situations where code 

analysis might be ineffective at identifying dependen-

cies, including when: (1) the project contains code in 

different programming languages, (2) the call site is 

separated from the target with a network connection as 

in remote procedure calls, or (3) when the dependency 

is transmitted by an event bus. Caltaldo, et al. have, in 

fact, validated that this technique of calculating artifact 

association, is a better indicator of “who needs to coor-

dinate with whom” in a team than techniques that em-

ploy static analysis [5]. The coordination requirements 

among developers are calculated based on the underly-

ing technical dependencies of artifacts that the devel-

opers have edited. 

Next, Tesseract calculates the communication be-

havior of the team, which is simply the social network 

of developers as determined by their communication 

records. For our purposes, we analyze email communi-

cation, comments about a bug as available in the bug 

tracker, and work performed and submitted through the 

bug tracker. We consider the latter two sources as a 

record of communication since OSS developers often 

discuss an idea or leave notes for each other in the bug 

tracking system. Finally, we calculate congruence – the 

match between coordination requirements and commu-

nication behavior by using the algorithm proposed by 

Cataldo et al. [6].  

Filtering: To help manage information overload, each 

of Tesseract’s four panels provides controls that allow 

the user to adjust the amount of information that is pre-

sented. For instance, the Project Activity pane includes 

a time slider from which a user can select a particular 

time period that they want to investigate. Often a user 

Figure 3. Information flow for Tesseract. 



might be interested in investigating a specific time pe-

riod, such as a past release or a period of time when she 

was away from the project. 

The Files pane has, among others, a threshold for 

determining the number of times a file must be commit-

ted together before it is considered linked. Making this 

threshold configurable enables a user to fine tune the 

density of the file-to-file graph. For example, having a 

relatively low threshold of three will show a denser 

network than say a threshold of ten. Additionally, such 

configurations allow the user to filter noise in the data, 

which may be generated when non related artifacts are 

committed by coincidence. Developers can set appro-

priate thresholds based on their project culture and 

rigor. 

There are similar filters for the Developers and Issues 

panes which allow users to select only a subset of the 

data. Such filtering enables users to have fine-grained 

control over their investigations and allows them to 

configure the tool to best fit their team’s practices.  

Visualizing: The last step in the process is visualizing 

the socio-technical relationships in the project. We 

have chosen appropriate graphical representation (e.g., 

networks, time series display, area charts) for different 

kinds of information, each of which have been already 

been discussed.  

 

3.3. Design Rationale 
 

The following design considerations guided our ap-

proach:  

• Decoupling data collection from consumption. 

Tesseract decouples data collection from data con-

sumption. This allows it to be easily adapted to dif-

ferent projects, which may use alternative reposito-

ries or may already have archived data in specific 

formats. For Tesseract to work with these different 

projects all that needs to change is the data collec-

tion part as in the former case or the data extractor 

part as in the latter case – the rest of Tesseract re-

mains the same. 

• Easy substitution of linkage heuristics. Currently, 

Tesseract uses commit logs to determine file asso-

ciations. However, static analysis of code might 

provide additional insights, or an alternative view 

into file dependencies. Similarly, Tesseract pres-

ently uses three sources of communication records 

and two distinct heuristics to identify social rela-

tionships. Projects might have additional data (e.g., 

chat, wiki edits, web logs) available that can be 

used to determine social relationships. To address 

such additional data archives, as well as, prepare for 

possible future enhancements, Tesseract is purpose-

fully architected to allow the use of different heuris-

tics on different data sources. 

• Easy substitution of visualization components. 

Tesseract currently uses a force directed network 

layout to visualize file and developer networks. It 

uses a bar graph for overall project activity and a 

stacked area graph for bug data. Each visualization 

widget can be substituted with other appropriate 

visualization techniques. Tesseract’s architecture 

with its clean separation of analysis and visualiza-

tion is specifically geared towards experimentation 

with different kinds of graphical displays. 

 

3.4. Architecture 

The architecture of Tesseract, as seen in Figure 4, 

reflects our design considerations. Section 3.2 provided 

a description of the data collection and extraction part 

of Tesseract. Here, we describe the overall design pat-

tern of the rich web client, which comprises the analy-

sis and visualization components.  

Model: The data model stores three general categories 

of data: pre-processed relational data, user-specified 

filter settings, and the selection state of the tool, which 

includes entities that are currently selected and/or high-

lighted  

View: The different user interface (UI) components 

(e.g., bar chart, stacked area chart, graph visualization) 

are specified declaratively. We use third party visuali-

zation widgets for each of these UI components.  

Bindings: Bindings are also specified declaratively. 

Bindings exist between model data and view compo-

nents, as well as, among model components as is the 

case when a user configuration changes the dependency 

Figure 4. Tesseract architecture. 



determination analysis. In this case, the change in the 

settings is sensed and the bound model components are 

automatically recalculated. Similarly, some of the more 

complex analysis is done with a series of separate cal-

culations where the output of one calculation is con-

sumed by the next. This pipe and filter approach is 

accomplished by binding the output of the first to the 

input of the next. In this way, the “controller” from a 

traditional model-view-controller meta-pattern is 

spread out among all of the “on-changed” events of the 

model objects. 

 

4. Evaluation 
 

We performed formative evaluations of Tesseract 

with two objectives in mind. First, we wished to inves-

tigate the usability of cross-linked displays providing 

multiple perspectives of a software project. Second, we 

wanted to understand the kinds of interactions and in-

vestigations that developers would perform with an 

exploratory tool such as Tesseract. Towards this goal, 

we first instrumented Tesseract with data from a large 

scale open source project, which validated the feasibil-

ity of our technique. We then performed informal lab 

based experiments for usability testing, which helped 

us identify bugs and features that have been incorpo-

rated in the next version of the tool. We then inter-

viewed experienced open source developers to obtain 

feedback on the kinds of information that developers 

needed for their day-to-day work and how they would 

use Tesseract.  

 

4.1. Use of GNOME project data 
 

To be useful, Tesseract must collect, analyze, and 

cross-link extensive data from software projects. We 

tested the feasibility of building Tesseract by collecting 

and analyzing approximately ten years of data from the 

GNOME project [14]. Project source code and mailing 

list archives are freely available and were downloaded 

from public archives. All together more than 1,000 

developers made nearly 2.5 million changes to files 

grouped into 480,000 commits. We worked with pro-

ject administrators to obtain a copy of the complete bug 

database for the project, which contained 790,000 

comments on 200,000 bugs, reported by 26,000 differ-

ent people.  

This data was loaded into a large database with a 

single schema that integrates each of these data 

streams. Like many open source projects these data 

streams were not seamlessly integrated with one an-

other, making it difficult to associate files, bugs, email 

messages, and individual users. We worked with mem-

bers of the community, and utilized information from 

norms and practices, such as referencing bug numbers 

in source code commit messages, to link together all 

the elements. The most difficult part of cross-linking 

the GNOME data was in normalizing user names 

across databases. Being open source, individuals often 

used different aliases for each system (SCM, bug track-

er, email). While, a large part of the normalization 

process was automated, we needed to speak to indi-

viduals to makes sense of the remaining subset (about 

10%). Such inconsistencies in user names are unlikely 

to be an issue in commercial projects making the un-

derlying analysis and cross-linking effort easier. 

Our system, currently, contains a complete and in-

tegrated data set that links together personal identities, 

individual files, source code commits, email messages, 

bugs and bug discussions. The database is not limited 

to a single project or ecosystem. While we currently 

have the most robust data for the GNOME project, we 

also have done substantial explorations of the Eclipse 

ecosystem and had similar success in linking entities. 

Furthermore, the system is extensible enough that addi-

tional data sources such as blogs and chat logs can be 

added as and when they are made available. 

 

4.2. Usability studies 
 

We performed a small set of usability experiments 

to evaluate whether users could understand and apply 

the cross-linked displays to perform a given set of pro-

ject exploration tasks. We recruited four graduate stu-

dents for the study. Participants were asked about their 

background and given a brief tutorial on tool usage. 

They were then given one hour to perform a set of five 

tasks that involved a particular GNOME project (Pro-

ject Rbx).  

• Task 1: identify a set of developers who you can go 

for help with your task (a set of file names that 

would be required for the task was provided). 

• Task 2: identify how much these files have changed 

and by whom in the past two releases. 

• Task 3: identify the key contributors in the project 

in the above time frame. 

• Task 4: identify the contributions of a particular 

developer (name provided) and comment on their 

communication network (email, bug discussion, 

congruence).  

• Task 5: what factors would you consider before 

determining whether project Rbx should be incor-

porated in your application? What information can 

you derive from Tesseract?  

These tasks were purposely designed to require the use 

of two panels per task. Our main objective was to eva-



luate the effectiveness of the different visualization 

layouts for presenting each kind of information and the 

usability of cross-linked panels. One of the researchers 

was present in the room as an observer. Participants 

were asked to think aloud and their interactions with 

the tool were recorded via screen capture software.  

We found that all participants performed consis-

tently and provided similar answers to Tasks 1 through 

4, in the allotted time. We found that participants had 

difficulty understanding the concept of “congruence” 

and typically simplified the concept by relying on the 

color coding “green” to be good and “red” to be bad. 

Alternatively, they switched to only viewing the com-

munication network (email or bug or a combination) to 

solve Task 4. Answers to Task 5 varied widely among 

participants as different people used different heuris-

tics, such as number of developers, current number of 

bugs open and their severity, total number of bugs, 

levels of activity. Keeping Task 5 open ended allowed 

us to identify the different kinds of information that 

users might require and provided us pointers to other 

data sources that might be useful for Tesseract to cap-

ture. 

We terminated our studies after four runs because 

we found that participants were using similar processes 

to perform their tasks, which provided consistent re-

sults. Further, we needed to fix two bugs that were 

identified during the study and implement several fea-

ture requests that would greatly enhance the usability of 

the tool. In particular, the implementation of the search 

capabilities and textual listing of active developers and 

files was a request from users in this study. We decided 

to stop the usability testing to implement the requested 

changes. 

 

4.3. Experienced developer feedback 
 

A key objective of our formative evaluations was to 

understand how real-life developers would use an ex-

ploratory environment, such as Tesseract, for their day-

to-day use. The fact that we had instrumented Tesseract 

with open source project data motivated us to interview 

open source developers and demonstrate Tesseract to 

them. Specifically, we conducted a series of interviews 

with five developers experienced in both open source 

and distributed software development. These develop-

ers had experience working in the software domain 

from four to thirteen years and had been involved with 

open source development from two to eight years. 

None of these developers had experience in the specific 

GNOME project that we used during the tool demon-

strations. This was a deliberate choice, as we did not 

want past experience or personal information about the 

project to influence the developer in their investiga-

tions. 

During the course of the interview we asked these 

developers about what role(s) they held on their project 

and their typical day-to-day activities. We then demon-

strated different features of Tesseract, always using 

data from the same project in GNOME for consistency. 

After presenting the features and providing a brief ex-

planation, we solicited free-form feedback on the fea-

tures and scenarios in which they envisioned using Tes-

seract.  

All our interviewees found the ability of viewing 

and exploring linkages among different project entities 

extremely interesting and useful. In particular, inter-

viewees suggested they would use the file-to-file link-

ages to investigate which files are changed together and 

the ripple effects of changes. Most developers particu-

larly liked our heuristics for file association (i.e. files 

that are changed together are linked) 

“The implicit dependency stuff, that, I think 

could be really useful in and of itself. So things 

that which end up being changed together but 

don't necessarily have an inheritance relation-

ship, or compositional -- knowing that, I've 

changed this thing it looks like something in iso-

lation, but in reality whenever someone changes 

something here, these thirty other things change 

because of some ripple effect, that would be use-

ful…”  

Interviewees also showed considerable interest in 

the linkages between files and developers. They fore-

saw using such links to answer questions such as: (1) 

which developers are interested in which files, (2) who 

is contributing what, (3) who should I talk to, and (4) 

who has made a particular change. They also suggested 

that this feature could be useful for quickly updating 

oneself with information of what had occurred in the 

project while they were away. Developer largely felt 

that finding such information currently requires signifi-

cant efforts in reading large amounts of email or com-

municating with numerous people  

“It's usually just talking to people about what hap-

pened, going back to the CVS and trying to see 

what happened with the file changes [is] kinda 

fruitless.” The developer then mentioned how Tes-

seract could prove useful in this situation. “…from 

a grunt developer standpoint, the file listing and 

cross reference of who has worked before – that 

would be very, very nice.” 

Some interviewees suggested that the developer-to-

developer linkages could serve as a means of creating 

an awareness of which developers work closely – in-

formation that is missing in their distributed work set-



tings. As already observed by Gutwin et al. [18], we 

found that most (senior) developers relied on an im-

plicit knowledge of their project as created from me-

ticulously keeping up-to-date with the different mailing 

lists. They thought that the developer linkages would 

only be marginally useful for their every day work. It 

was interesting to note that interviewees who were 

managers felt differently, and considered these linkages 

to be extremely useful. They foresaw using the congru-

ence information provided by Tesseract to align the 

communication patterns in their team. 

“this [developer pane] is a project manager view. 

What I know is, I am this person, three people 

have red flag and one person has green flag. My 

dashboard says you need to talk to [developer] 

because he made these changes…”. 

Most developers agreed that Tesseract would greatly 

benefit new developers and managers. Without being 

asked explicitly, three developers volunteered that they 

would use Tesseract if they were to start working on a 

new project and four developers mentioned the tool to 

be particularly useful for managerial purposes.  

In addition to confirming the need for capabilities 

for a tool like Tesseract, these interviews provided us 

with insightful feedback, which will help us improve 

the tool and can make it a likely candidate for adoption 

by this community.  

 

5. Conclusions and Future Work 
 

We have developed Tesseract to enable interactive 

exploration of the complex, evolving relationships 

among different project elements. Our work builds 

upon the recent history of socio-technical tools by: 

• Showing the feasibility of creating a general project 

browser tool that considers both technical depend-

encies as well as social interactions. This signifi-

cantly extends the capabilities of other tools like 

Ariadne [8] and Expertise Browser [22], which only 

consider technical records to assist social interac-

tions. Further, Tesseract provides a generalization 

of their intended capabilities. Tesseract is designed 

for investigating relationships among code, com-

munication records, bugs, and developers over time. 

• Embedding the theoretical foundations of congru-

ence established by Cataldo et al. – one of a number 

of possible retrospective analysis techniques – in a 

tool to help developers better align their communi-

cation patterns with coordination requirements. 

• Enabling interactive exploration of the complex 

socio-technical space by novel use of cross-linked 

views that support selecting, highlighting, search-

ing, drilling-down, and filtering.  

Our informal usability studies and feedback from 

open source developers illustrate that Tesseract is rela-

tively easy to use and valuable for new developers or 

managers who have to yet create a good mental map-

ping of the project. Further, Tesseract can help experi-

enced users to investigate a problem when they have an 

incomplete or incorrect knowledge of that event. 

We intend to further refine Tesseract based on user 

recommendations, such as: (1) hierarchically grouping 

files based on packages, functionality, or architecture, 

(2) providing additional context of changes, (3) allow-

ing developers to specify when they have communi-

cated with another developer by means other than that 

currently captured by the tool, and (4) explore different 

analysis techniques, such as adding temporal considera-

tions to our calculation of congruence or adapting so-

cial network analyses to software engineering. 

We also plan to conduct other lab-based studies to 

observe whether different development modes (e.g., 

code design, implementation, debugging) require dif-

ferent kinds of information gathering and investiga-

tions. Additionally, we plan to have Tesseract adopted 

by a live project and/or communication channel and 

identify the different, live usage patterns by capturing 

user interactions. Such a study will help us further re-

fine our understanding of the kinds of information that 

are sought by developers during their development 

process. Finally, our ultimate goal is to have Tesseract 

serve as a front-end tool for project explorations. 
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