
Tesseract: Interactive Visual Exploration of Socio-Technical Relationships in

Software Development

Anita Sarma, Larry Maccherone, Patrick Wagstrom, and James Herbsleb

 Institute for Software Research

Carnegie Mellon University

5000 Forbes Avenue

Pittsburgh, PA 15213 USA

{asarma, LMaccherone, pwagstro, herbsleb}@cmu.edu

Abstract

Software developers have long known that project

success requires a robust understanding of both tech-

nical and social linkages. However, research has

largely considered these independently. Research on

networks of technical artifacts focuses on techniques

like code analysis or mining project archives. Social

network analysis has been used to capture information

about relations among people. Yet, each type of infor-

mation is often far more useful when combined, as

when the “goodness” of social networks is judged by

the patterns of dependencies in the technical artifacts.

To bring such information together, we have developed

Tesseract, an interactive exploratory environment that

utilizes cross-linked displays to visualize the myriad

relationships between artifacts, developers, bugs, and

communications. We evaluated Tesseract by (1) dem-

onstrating its feasibility with GNOME project data (2)

assessing its usability via informal user evaluations,

and (3) verifying its suitability for the open source

community via semi-structured interviews.

1. Introduction

Development environments increasingly reflect the

fact that artifacts, developers, and tasks are intrinsically

bound together in a software project. While editing a

file of source code, for example, many other artifacts

are likely to be relevant. Considerable research effort

has focused on using a variety of techniques such as

static code analyses [1, 2], task definition [20], text

analysis [7], and records of prior developer activity to

identify these related artifacts [10] and make them eas-

ily accessible when they are likely to be useful.

There is also an increasing interest in understanding

and using relationships among individuals in a team to

improve software development. Research has focused

on increasing awareness among developers about each

other’s relevant activities [17], and on using the social

relations among developers to identify implicit teams

[4] or to predict software defects [21]. Such efforts

often draw on social network analysis (SNA).

So far, these two streams of research have mostly

been separate from each other. Yet, both of these sets

of relationships – the technical and the social – become

much more useful when they are considered together. It

is difficult, for example, to judge whether a given pat-

tern of communication is adaptive or dysfunctional

without understanding the dependencies in the tasks

being undertaken by the communicators. For instance,

developers who are modifying interdependent code

modules but not communicating may introduce poten-

tial future integration problems. Research has shown

that development work proceeds more efficiently when

patterns of communication match the logical depend-

encies in the code that is being modified [6].

This match between the networks of artifacts and the

networks of people, has a long history [19, 23], but has

only recently become a focus of research in software

engineering. Understanding and using analysis showing

the degree of match, or congruence, between the social

and technical aspects of a project is vital for supporting

collaboration and coordination on software projects [5,

6]. While developers are intuitively aware of this, and

software architects actively engage in social engineer-

ing while creating architectural design [15], we have

relatively few tools or practices that provide socio-

technical information in useful, actionable ways.

The need for such tools is reflected by findings from

field studies, which have shown that developers find it

difficult to decipher how their work binds them with

that of others. Consequently, they spend a significant

portion of their time in managing their changes [9, 24]

or in finding the right person with whom to communi-

cate [16]. Our own semi-structured interviews of open

source developers confirm this need and have guided

the design of Tesseract, a socio-technical dependency

browser that is specifically constructed to:

• Simultaneously show the social as well as technical

relationships among different project entities (e.g.,

developers, communication, code, and bugs).

• Cross-link and enable interactive exploration of

these relationships and how they evolve.

• Highlight (mis)matches among technical dependen-

cies and communication patterns of developers.

More specifically, Tesseract analyzes different project

archives to determine the numerous socio-technical

relationships in a project. It then visualizes these rela-

tionships via four juxtaposed displays that are cross-

linked to enable in-depth, multi-perspective investiga-

tion for a user-selected time period (see Figure 1).

Constructing a system like Tesseract raises several

questions such as, which dependency analysis best re-

flects technical dependencies (code-based analysis or

files that are frequently committed together), which

project entities really bind the social and technical as-

pects of a project, which social network analyses work

best for clustering data, scalability, and the general

effectiveness of the tool in helping developers under-

stand socio-technical dependencies in a project. The

aim of this paper is not to provide an absolute answer

to all of the questions, but to serve as an initial investi-

gation into the feasibility of creating a project explora-

tion tool that focuses on the socio-technical space.

To do so, we fist demonstrated the feasibility of our

approach by using Tesseract to analyze and visualize a

large open source project archive. We then conducted

formative evaluations of Tesseract through informal

user evaluations that illustrated the ease of use afforded

by the tool. Finally, we conducted interviews with open

source developers, where we demonstrated Tesseract

and obtained their feedback on its features and devel-

opment scenarios where the tool would be useful.

The remainder of this paper is organized as follows.

Section 2 motivates the design of Tesseract by building

on case studies that reveal the need of an exploratory

environment like Tesseract and lessons learned from

existing tools. In Section 3, we present Tesseract fol-

lowed by two usage scenarios. We end the section with

a description of our design principles and implementa-

tion techniques. Section 4 discusses our formative

evaluations of Tesseract and we conclude in Section 5

discussing potential future work.

2. Informing the design of Tesseract

We informed the design of Tesseract by building

on: (1) case studies that highlight problems of manag-

Figure 1. Tesseract UI showing four displays: (a) project activity pane with code commits (top) and

communication (bottom), (b) file network, (c) developer communication network, and (d) issues pane.

(d)

(b) (c)

(a)

ing change and communication in software teams, and

(2) lessons learned from coordination tools that attempt

to address these problems. Our interviews with open

source developers helped us better understand the na-

ture of these problems and identify tool features that

would be useful in their development environment.

2.1. Problems of change and communication

We motivate our work through four case studies.

The first study by de Souza and Redmiles [9] observed

two software teams to understand how they managed

the impact of their changes. The authors observed that

one team was highly disciplined and managed change

by: (1) rigorously broadcasting email of impending

changes and (2) reading email to create an awareness

of “who was working on what”. While this practice

worked well, it involved significant effort in writing

and reading email. The other team was larger and less

disciplined when informing others of changes. This

resulted in team members having much difficulty in

identifying the impact of their changes on others and

vice versa. Further, the use of multiple databases for

maintaining development and communication records

caused duplication of information and overwhelmed

the users.

The second study by Cataldo et al. [6] analyzed pro-

ject data of a large software development team to un-

derstand the coordination needs arising because of un-

derlying technical dependencies in work. They com-

pared social networks created because of technical de-

pendencies among artifacts (coordination requirements)

with the communication patterns in the team. It was

found that teams with high congruence (match between

the coordination requirements and communication pat-

terns) took less time to complete tasks. They also found

that the coordination requirements evolved over time,

requiring developers to correctly identify the new rela-

tionships and people with whom to communicate [5].

The third study by Sosa et al. [27] uses a similar

technique as Cataldo et al. to find the degree to which

team interactions match the way components are cou-

pled because of shared interfaces (alignment matrix).

They found that developers and engineers were

unlikely to be aware of interface changes, especially

when such changes occurred across system or organiza-

tional boundaries. Their recommendation to overcome

these problems is that managers create an alignment

matrix to align their team interactions with the way

components are associated via shared interfaces.

Finally, Gutwin et al. [18] investigated collabora-

tion mechanisms in open source development. They

found that text communications (mailing list and IRC

chat) were the primary mechanisms for maintaining

awareness of “who is doing what” and expertise loca-

tion. The community was sufficiently disciplined to

generate and maintain public communication archives,

thereby enabling all developers on the lists to become

peripheral participants in each others’ conversation.

However, developers often found it difficult to remain

up-to-date with all communications in the different

lists. Further, splitting communication among email,

chat, and issue trackers caused information duplication

and situations where developers missed important in-

formation.

These studies reflect the different needs faced by

developers and managers. Further, the work by Gutwin

et al. shows that these needs are similar between com-

mercial and open source projects. We developed Tes-

seract, an interactive exploratory environment to enable

developers to investigate the complex relationships

among code, developers, communication, and bugs

and, thereby, help them align their interactions with the

technical dependencies in their work.

2.2. Current tool support

There exists considerable tool support for analyzing

technical dependencies in a project via code analysis

techniques [2]. Similarly, there has been extensive

work on capturing the social structure of an organiza-

tion based on the interactions among individuals [28].

While each analysis type provides important informa-

tion about the project, it can be much more useful when

combined together. Emerging research following this

premise has produced a suite of tools. For instance,

tools in the computer-supported cooperative work

community attempt to help developers become aware

of ongoing project activities as they occur [17]. The

hypothesis is that developers can better coordinate their

work with that of others’ by leveraging the contextual

awareness of ongoing changes in the project [3, 12].

Tools such as Tukan [26], CollabVS [11], and Palantír

[25] perform basic code analysis to identify dependen-

cies among artifacts and warn developers when these

dependencies are changed by another.

Project exploration tools follow a similar approach,

but have slightly different goals. Many of these tools

use the socio-technical relationship model created from

code contributions, visitations, or dependencies to help

a developer with their work. Expertise Browser [22],

for instance, uses information about developers’ past

code contributions (both frequency and lines-of-code

committed) to determine their expertise. However, it

was noted that Expertise Browser was often used for

other purposes such as obtaining an overview of pro-

ject activities or finding recent changes to a particular

code module. Team Tracks [10] attempts to familiarize

new developers with the code base by flagging parts of

code that have been frequently visited (signifying their

importance) and parts that are visited in succession

(depicting their logical coupling). Ariadne [8] uses call

graph analysis to identify artifacts dependencies, which

are combined with information of code contributions to

model socio-technical relations in a project.

In summary, current tools use different techniques to

decipher code relationships, information of which is

then used to facilitate social interactions in a team.

However, these tools typically: (1) use a single data

source – primarily the code archive, (2) do not compare

or contrast the model created by technical dependen-

cies with communication patterns, and (3) do not allow

interactive exploration of the underlying socio-

technical model. Further, the Expertise Browser study

indicates that developers and managers are eager to

investigate the different relationships existing in their

projects to better inform their work.

To the best of our knowledge, CodeSaw [13] is the

only tool that considers communication records in ad-

dition to code archives. Both of which are displayed

juxtaposed in a time series. While such a display helps

a user link peaks in contributions with spikes in email

communications (or lack thereof) to discern develop-

ment practices, it fails to map social interactions with

specific technical dependencies.

3. Tesseract

Tesseract provides an interactive exploratory envi-

ronment which developers can investigate relationships

across code, bugs, email and bug discussions, and de-

velopers’ contributions. It consists of four cross-linked

panes:

• The Project activity pane (Figure 1(a)) displays the

overall activities in a project (code commits at the

top and communication at the bottom) as a time se-

ries display. It allows users to select a time period

for their investigation, which is reflected in all other

panes.

• The Files network pane (Figure 1(b)) displays arti-

fact associations as a network, which is created by

linking files that are frequently changed together.

The thickness of the edges indicates the number of

times pairs of files have been committed together

and can be thresholded by the user. Textual listing

of the file names allows quick identification of spe-

cific files by name.

• The Developers network pane (Figure 1(c)) displays

developers and links among them. Two developers

are linked if they either edited the same artifact or

interdependent artifacts. The edges in this network

are colored green when there exists a requirement to

communicate and developers have done so via ei-

ther email or the bug repository (e.g., comments or

activities in Bugzilla); otherwise the edges are col-

ored red. The thickness of the edges is based on the

number of times developers communicated. Similar

to the file network, a textual listing of the developer

names is provided.

• The Issues pane (Figure 1(d)) displays defect or

feature related information as a stacked area chart,

as well as, in a detailed listing.

Tesseract enables exploration of project data and its

underlying relationships in multiple ways. First, click-

ing on an entity (graph element or line in the textual

lists) will highlight that entity and will also show all

related entities in the other panes. For example, select-

ing a node in the developer network highlights all the

files and bugs with which the developer has been in-

volved during the given time frame. Second, hovering

over a node in either the ‘Files’ or ‘Developers’ net-

work, displays additional information about the node

and highlights its neighbors. Third, a user can pan

(background drag), zoom (wheel), and move individual

nodes in the graph. Fourth, search functionality allows

users to quickly find an entity when they know its full

or partial details. Finally, Tesseract allows users to

change the perspective of their investigation by drilling

down on specific artifact(s) and developer(s). For in-

stance, a user might drill-down to view a subset of arti-

facts to find which other developers have edited them.

3.1. Usage Scenarios

Tesseract is designed to facilitate the investigation

of a particular event or identification of development

patterns. Here we present two example scenarios of

each type. The first scenario reflects a common prac-

tice by new developers and was mentioned multiple

times in our interviews. The second scenario presents

an interesting insight into the research hypothesis on

congruence [5]. Both examples reflect real project data

from a GNOME project with anonimyzed developer

names.

Investigating an event:

Interactive exploration of the underlying socio-

technical space in a project allows a developer to draw

upon their (possibly incomplete or incorrect) memory

and either confirm it, refute it, or supplement it with

adaptive analysis of only the portions of the data set

that they consider relevant.

Assume a hypothetical case where Billy Mick, a

new developer, is assigned to fix a particular bug re-

garding the display of “minutes remaining” in a play-

list. From reading the mailing lists, he remembers that

Glenda Whyte had worked on a related feature – add-

ing “minutes” to the product. He decides to investigate

that feature to obtain a better understanding of the files

and people that were involved. To do so, Billy, changes

the time frame in Tesseract (Figure 1(a)) to a time of an

earlier activity spurt. He finds the feature that Glenda

had added (Bug ID 9028 in Figure 1 (d)) and selects it.

This highlights the two developers and four artifacts

that are associated with that bug id (shown in yellow in

Figure 1 (b) & (c)).

He realizes that his bug fix would at least involve

these four files. Additionally, he notices that another

developer – Lynda Finney, who is not part of the core

group – actually worked on three of those files in rela-

tion to this feature. Because of the red line between

Glenda and Lynda, Billy realizes that these developers

have not communicated with each other in the selected

time frame. He supposes that Alicia Dimaggio, the cur-

rent project lead, may have mediated between Glenda

and Lynda, as both developers have green edges with

Alicia. To ensure that he has a complete picture of de-

velopment activities regarding the feature, Billy de-

cides to contact Lynda.

Deciphering patterns:
Figure 2 provides two snapshots of project history,

each presenting the file network, developer network,

and issues data during two distinct time periods. These

periods were chosen because they contained high bursts

of activities. We can make the following observations

from Figure 2(a), which shows the earlier activity

burst: (1) Stephen Walther is the primary contributor

having changed literally every file; (2) while Stephen is

in contact with most other developers (green lines from

Stephen to other developers), very few developers are

communicating among themselves (red lines); (3) the

file network is densely connected; and (4) this time

period is marked with a continuously increasing list of

open issues.

When we investigate the second time period, as

shown in Figure 2(b), we find that: (1) Alicia Di-

Maggio is now the primary contributor; (2) she is

communicating with other contributors and there is

sufficient communications among the other core con-

tributors; (3) the file network is sparse and displays a

discernable structure; and (4) the list of open issues is

decreasing.

These two contrasting patterns do not necessarily

imply any causal relationships between communication

patterns and/or a denser file network and/or an increase

in open issues, but certainly provide interesting insights

into the project that merits further investigation. Read-

ers can investigate these scenarios further through our

tool that is available at http://crc.maccherone.com/ tes-

seract/.

3.2. Information flow

Figure 3 presents the information flow underlying

Tesseract. We have specifically designed Tesseract to

separate the data collection and extraction from the

analysis and visualization. The former functionalities

are carried out at the server side, while the latter are

part of a rich web client. Designing Tesseract as a web

application removes the need for installing any soft-

ware on the client side, which makes it easy for manag-

ers to quickly use the tool, as well as, making it feasible

for adoption by the open source community.

Collecting: Best practices for most open source and

distributed development projects use three major tools

to manage software development: a source code man-

agement system (SCM), one or more project mailing

lists, and a common bug or issue tracking database.

Most activities involving code and issues are archived

by either SCM systems or issue trackers. Open source

projects typically maintain and make publicly available

a rich history of their communication records. Tesse-

ract relies upon such prior collection of project data.

We note that in commercial software development,

project mailing list or other communication records

(a)

(b)

Figure 2. Contrasting development patterns.

may not be available. In such conditions, the developer

networks will either be partial or unavailable.

Extracting and Cross-linking: Different projects use

different systems for their code and bug archival. For

example, a project may use CVS instead of Perforce as

their configuration management system or may use

Trac instead of Bugzilla for their issue/defect tracking.

In order to ensure that Tesseract is able to work with a

wide set of projects as well as data that is already ar-

chived by researchers, we employ an additional extrac-

tion and cross-linking step.

Depending upon the tools and practices of a particu-

lar project, data linking different project entities may

exist in different forms in the project archives. In many

cases, these links are explicit. As in the case of associ-

ating which developers have committed which files. In

other cases, the links may need to be deduced heuristi-

cally, as in the case of identifying associations among

artifacts. Finally, in some cases, team practices call for

the recording of cross-links in data. For example, team

practices commonly call for the bug-id to be listed in

the commit log of a change set that fixed a particular

bug. A critical requirement of Tesseract is the ability to

identify individuals across multiple databases and dis-

cover which files were changed with which commits.

We note that in some cases, additional effort may be

needed to create these links, but we believe that the

benefits provided by Tesseract will outweigh these

costs. Creating richer information archives, by captur-

ing discussions via email, chat, or wikis can help the

team build a better understanding of their project.

Tesseract uses an extractor component (see Figure

4) to pull project data from its original locations and

cross-link it where applicable. This cross-linked data is

then stored in a small set of XML files. The schema of

which is straight forward and enumerates the informa-

tion we need to analyze and link the different relation-

ships between artifacts, developers, and bugs or issues.

We note that the extractor component is specific to a

particular set of tools and practices and may require re-

implementation for different projects. But once this

step is performed, the rest of Tesseract is independent

of the underlying data collection process.

Analyzing: The XML files generated by the extractor

are analyzed on the rich web client to identify (1) rela-

tionships among code, developer, and bugs, (2) coordi-

nation requirements among team members that may

arise because of the underlying technical dependencies

in their work, (3) communication patterns among de-

velopers, and (4) the match between the coordination

requirements and the communication patterns.

We treat artifacts that are frequently committed to-

gether to be logically associated with each other. We

do so because artifacts that are edited or created as part

of a particular task are often checked-in together as a

change set [29]. Such practices have become norms in

most organizations and software teams. This method of

deducing dependencies works in situations where code

analysis might be ineffective at identifying dependen-

cies, including when: (1) the project contains code in

different programming languages, (2) the call site is

separated from the target with a network connection as

in remote procedure calls, or (3) when the dependency

is transmitted by an event bus. Caltaldo, et al. have, in

fact, validated that this technique of calculating artifact

association, is a better indicator of “who needs to coor-

dinate with whom” in a team than techniques that em-

ploy static analysis [5]. The coordination requirements

among developers are calculated based on the underly-

ing technical dependencies of artifacts that the devel-

opers have edited.

Next, Tesseract calculates the communication be-

havior of the team, which is simply the social network

of developers as determined by their communication

records. For our purposes, we analyze email communi-

cation, comments about a bug as available in the bug

tracker, and work performed and submitted through the

bug tracker. We consider the latter two sources as a

record of communication since OSS developers often

discuss an idea or leave notes for each other in the bug

tracking system. Finally, we calculate congruence – the

match between coordination requirements and commu-

nication behavior by using the algorithm proposed by

Cataldo et al. [6].

Filtering: To help manage information overload, each

of Tesseract’s four panels provides controls that allow

the user to adjust the amount of information that is pre-

sented. For instance, the Project Activity pane includes

a time slider from which a user can select a particular

time period that they want to investigate. Often a user

Figure 3. Information flow for Tesseract.

might be interested in investigating a specific time pe-

riod, such as a past release or a period of time when she

was away from the project.

The Files pane has, among others, a threshold for

determining the number of times a file must be commit-

ted together before it is considered linked. Making this

threshold configurable enables a user to fine tune the

density of the file-to-file graph. For example, having a

relatively low threshold of three will show a denser

network than say a threshold of ten. Additionally, such

configurations allow the user to filter noise in the data,

which may be generated when non related artifacts are

committed by coincidence. Developers can set appro-

priate thresholds based on their project culture and

rigor.

There are similar filters for the Developers and Issues

panes which allow users to select only a subset of the

data. Such filtering enables users to have fine-grained

control over their investigations and allows them to

configure the tool to best fit their team’s practices.

Visualizing: The last step in the process is visualizing

the socio-technical relationships in the project. We

have chosen appropriate graphical representation (e.g.,

networks, time series display, area charts) for different

kinds of information, each of which have been already

been discussed.

3.3. Design Rationale

The following design considerations guided our ap-

proach:

• Decoupling data collection from consumption.

Tesseract decouples data collection from data con-

sumption. This allows it to be easily adapted to dif-

ferent projects, which may use alternative reposito-

ries or may already have archived data in specific

formats. For Tesseract to work with these different

projects all that needs to change is the data collec-

tion part as in the former case or the data extractor

part as in the latter case – the rest of Tesseract re-

mains the same.

• Easy substitution of linkage heuristics. Currently,

Tesseract uses commit logs to determine file asso-

ciations. However, static analysis of code might

provide additional insights, or an alternative view

into file dependencies. Similarly, Tesseract pres-

ently uses three sources of communication records

and two distinct heuristics to identify social rela-

tionships. Projects might have additional data (e.g.,

chat, wiki edits, web logs) available that can be

used to determine social relationships. To address

such additional data archives, as well as, prepare for

possible future enhancements, Tesseract is purpose-

fully architected to allow the use of different heuris-

tics on different data sources.

• Easy substitution of visualization components.

Tesseract currently uses a force directed network

layout to visualize file and developer networks. It

uses a bar graph for overall project activity and a

stacked area graph for bug data. Each visualization

widget can be substituted with other appropriate

visualization techniques. Tesseract’s architecture

with its clean separation of analysis and visualiza-

tion is specifically geared towards experimentation

with different kinds of graphical displays.

3.4. Architecture

The architecture of Tesseract, as seen in Figure 4,

reflects our design considerations. Section 3.2 provided

a description of the data collection and extraction part

of Tesseract. Here, we describe the overall design pat-

tern of the rich web client, which comprises the analy-

sis and visualization components.

Model: The data model stores three general categories

of data: pre-processed relational data, user-specified

filter settings, and the selection state of the tool, which

includes entities that are currently selected and/or high-

lighted

View: The different user interface (UI) components

(e.g., bar chart, stacked area chart, graph visualization)

are specified declaratively. We use third party visuali-

zation widgets for each of these UI components.

Bindings: Bindings are also specified declaratively.

Bindings exist between model data and view compo-

nents, as well as, among model components as is the

case when a user configuration changes the dependency

Figure 4. Tesseract architecture.

determination analysis. In this case, the change in the

settings is sensed and the bound model components are

automatically recalculated. Similarly, some of the more

complex analysis is done with a series of separate cal-

culations where the output of one calculation is con-

sumed by the next. This pipe and filter approach is

accomplished by binding the output of the first to the

input of the next. In this way, the “controller” from a

traditional model-view-controller meta-pattern is

spread out among all of the “on-changed” events of the

model objects.

4. Evaluation

We performed formative evaluations of Tesseract

with two objectives in mind. First, we wished to inves-

tigate the usability of cross-linked displays providing

multiple perspectives of a software project. Second, we

wanted to understand the kinds of interactions and in-

vestigations that developers would perform with an

exploratory tool such as Tesseract. Towards this goal,

we first instrumented Tesseract with data from a large

scale open source project, which validated the feasibil-

ity of our technique. We then performed informal lab

based experiments for usability testing, which helped

us identify bugs and features that have been incorpo-

rated in the next version of the tool. We then inter-

viewed experienced open source developers to obtain

feedback on the kinds of information that developers

needed for their day-to-day work and how they would

use Tesseract.

4.1. Use of GNOME project data

To be useful, Tesseract must collect, analyze, and

cross-link extensive data from software projects. We

tested the feasibility of building Tesseract by collecting

and analyzing approximately ten years of data from the

GNOME project [14]. Project source code and mailing

list archives are freely available and were downloaded

from public archives. All together more than 1,000

developers made nearly 2.5 million changes to files

grouped into 480,000 commits. We worked with pro-

ject administrators to obtain a copy of the complete bug

database for the project, which contained 790,000

comments on 200,000 bugs, reported by 26,000 differ-

ent people.

This data was loaded into a large database with a

single schema that integrates each of these data

streams. Like many open source projects these data

streams were not seamlessly integrated with one an-

other, making it difficult to associate files, bugs, email

messages, and individual users. We worked with mem-

bers of the community, and utilized information from

norms and practices, such as referencing bug numbers

in source code commit messages, to link together all

the elements. The most difficult part of cross-linking

the GNOME data was in normalizing user names

across databases. Being open source, individuals often

used different aliases for each system (SCM, bug track-

er, email). While, a large part of the normalization

process was automated, we needed to speak to indi-

viduals to makes sense of the remaining subset (about

10%). Such inconsistencies in user names are unlikely

to be an issue in commercial projects making the un-

derlying analysis and cross-linking effort easier.

Our system, currently, contains a complete and in-

tegrated data set that links together personal identities,

individual files, source code commits, email messages,

bugs and bug discussions. The database is not limited

to a single project or ecosystem. While we currently

have the most robust data for the GNOME project, we

also have done substantial explorations of the Eclipse

ecosystem and had similar success in linking entities.

Furthermore, the system is extensible enough that addi-

tional data sources such as blogs and chat logs can be

added as and when they are made available.

4.2. Usability studies

We performed a small set of usability experiments

to evaluate whether users could understand and apply

the cross-linked displays to perform a given set of pro-

ject exploration tasks. We recruited four graduate stu-

dents for the study. Participants were asked about their

background and given a brief tutorial on tool usage.

They were then given one hour to perform a set of five

tasks that involved a particular GNOME project (Pro-

ject Rbx).

• Task 1: identify a set of developers who you can go

for help with your task (a set of file names that

would be required for the task was provided).

• Task 2: identify how much these files have changed

and by whom in the past two releases.

• Task 3: identify the key contributors in the project

in the above time frame.

• Task 4: identify the contributions of a particular

developer (name provided) and comment on their

communication network (email, bug discussion,

congruence).

• Task 5: what factors would you consider before

determining whether project Rbx should be incor-

porated in your application? What information can

you derive from Tesseract?

These tasks were purposely designed to require the use

of two panels per task. Our main objective was to eva-

luate the effectiveness of the different visualization

layouts for presenting each kind of information and the

usability of cross-linked panels. One of the researchers

was present in the room as an observer. Participants

were asked to think aloud and their interactions with

the tool were recorded via screen capture software.

We found that all participants performed consis-

tently and provided similar answers to Tasks 1 through

4, in the allotted time. We found that participants had

difficulty understanding the concept of “congruence”

and typically simplified the concept by relying on the

color coding “green” to be good and “red” to be bad.

Alternatively, they switched to only viewing the com-

munication network (email or bug or a combination) to

solve Task 4. Answers to Task 5 varied widely among

participants as different people used different heuris-

tics, such as number of developers, current number of

bugs open and their severity, total number of bugs,

levels of activity. Keeping Task 5 open ended allowed

us to identify the different kinds of information that

users might require and provided us pointers to other

data sources that might be useful for Tesseract to cap-

ture.

We terminated our studies after four runs because

we found that participants were using similar processes

to perform their tasks, which provided consistent re-

sults. Further, we needed to fix two bugs that were

identified during the study and implement several fea-

ture requests that would greatly enhance the usability of

the tool. In particular, the implementation of the search

capabilities and textual listing of active developers and

files was a request from users in this study. We decided

to stop the usability testing to implement the requested

changes.

4.3. Experienced developer feedback

A key objective of our formative evaluations was to

understand how real-life developers would use an ex-

ploratory environment, such as Tesseract, for their day-

to-day use. The fact that we had instrumented Tesseract

with open source project data motivated us to interview

open source developers and demonstrate Tesseract to

them. Specifically, we conducted a series of interviews

with five developers experienced in both open source

and distributed software development. These develop-

ers had experience working in the software domain

from four to thirteen years and had been involved with

open source development from two to eight years.

None of these developers had experience in the specific

GNOME project that we used during the tool demon-

strations. This was a deliberate choice, as we did not

want past experience or personal information about the

project to influence the developer in their investiga-

tions.

During the course of the interview we asked these

developers about what role(s) they held on their project

and their typical day-to-day activities. We then demon-

strated different features of Tesseract, always using

data from the same project in GNOME for consistency.

After presenting the features and providing a brief ex-

planation, we solicited free-form feedback on the fea-

tures and scenarios in which they envisioned using Tes-

seract.

All our interviewees found the ability of viewing

and exploring linkages among different project entities

extremely interesting and useful. In particular, inter-

viewees suggested they would use the file-to-file link-

ages to investigate which files are changed together and

the ripple effects of changes. Most developers particu-

larly liked our heuristics for file association (i.e. files

that are changed together are linked)

“The implicit dependency stuff, that, I think

could be really useful in and of itself. So things

that which end up being changed together but

don't necessarily have an inheritance relation-

ship, or compositional -- knowing that, I've

changed this thing it looks like something in iso-

lation, but in reality whenever someone changes

something here, these thirty other things change

because of some ripple effect, that would be use-

ful…”

Interviewees also showed considerable interest in

the linkages between files and developers. They fore-

saw using such links to answer questions such as: (1)

which developers are interested in which files, (2) who

is contributing what, (3) who should I talk to, and (4)

who has made a particular change. They also suggested

that this feature could be useful for quickly updating

oneself with information of what had occurred in the

project while they were away. Developer largely felt

that finding such information currently requires signifi-

cant efforts in reading large amounts of email or com-

municating with numerous people

“It's usually just talking to people about what hap-

pened, going back to the CVS and trying to see

what happened with the file changes [is] kinda

fruitless.” The developer then mentioned how Tes-

seract could prove useful in this situation. “…from

a grunt developer standpoint, the file listing and

cross reference of who has worked before – that

would be very, very nice.”

Some interviewees suggested that the developer-to-

developer linkages could serve as a means of creating

an awareness of which developers work closely – in-

formation that is missing in their distributed work set-

tings. As already observed by Gutwin et al. [18], we

found that most (senior) developers relied on an im-

plicit knowledge of their project as created from me-

ticulously keeping up-to-date with the different mailing

lists. They thought that the developer linkages would

only be marginally useful for their every day work. It

was interesting to note that interviewees who were

managers felt differently, and considered these linkages

to be extremely useful. They foresaw using the congru-

ence information provided by Tesseract to align the

communication patterns in their team.

“this [developer pane] is a project manager view.

What I know is, I am this person, three people

have red flag and one person has green flag. My

dashboard says you need to talk to [developer]

because he made these changes…”.

Most developers agreed that Tesseract would greatly

benefit new developers and managers. Without being

asked explicitly, three developers volunteered that they

would use Tesseract if they were to start working on a

new project and four developers mentioned the tool to

be particularly useful for managerial purposes.

In addition to confirming the need for capabilities

for a tool like Tesseract, these interviews provided us

with insightful feedback, which will help us improve

the tool and can make it a likely candidate for adoption

by this community.

5. Conclusions and Future Work

We have developed Tesseract to enable interactive

exploration of the complex, evolving relationships

among different project elements. Our work builds

upon the recent history of socio-technical tools by:

• Showing the feasibility of creating a general project

browser tool that considers both technical depend-

encies as well as social interactions. This signifi-

cantly extends the capabilities of other tools like

Ariadne [8] and Expertise Browser [22], which only

consider technical records to assist social interac-

tions. Further, Tesseract provides a generalization

of their intended capabilities. Tesseract is designed

for investigating relationships among code, com-

munication records, bugs, and developers over time.

• Embedding the theoretical foundations of congru-

ence established by Cataldo et al. – one of a number

of possible retrospective analysis techniques – in a

tool to help developers better align their communi-

cation patterns with coordination requirements.

• Enabling interactive exploration of the complex

socio-technical space by novel use of cross-linked

views that support selecting, highlighting, search-

ing, drilling-down, and filtering.

Our informal usability studies and feedback from

open source developers illustrate that Tesseract is rela-

tively easy to use and valuable for new developers or

managers who have to yet create a good mental map-

ping of the project. Further, Tesseract can help experi-

enced users to investigate a problem when they have an

incomplete or incorrect knowledge of that event.

We intend to further refine Tesseract based on user

recommendations, such as: (1) hierarchically grouping

files based on packages, functionality, or architecture,

(2) providing additional context of changes, (3) allow-

ing developers to specify when they have communi-

cated with another developer by means other than that

currently captured by the tool, and (4) explore different

analysis techniques, such as adding temporal considera-

tions to our calculation of congruence or adapting so-

cial network analyses to software engineering.

We also plan to conduct other lab-based studies to

observe whether different development modes (e.g.,

code design, implementation, debugging) require dif-

ferent kinds of information gathering and investiga-

tions. Additionally, we plan to have Tesseract adopted

by a live project and/or communication channel and

identify the different, live usage patterns by capturing

user interactions. Such a study will help us further re-

fine our understanding of the kinds of information that

are sought by developers during their development

process. Finally, our ultimate goal is to have Tesseract

serve as a front-end tool for project explorations.

6. Acknowledgements

This effort is partially funded by the NSF grant number

IIS-0414698 and IIS 0534656, and the Software Indus-

try Center and its sponsors, particularly the Alfred P.

Sloan Foundation. Effort also supported by a 2007 Jazz

Faculty Grant.

7. References

[1] R. Arnold and S. Bohner, Software Change Impact

Analysis (Practitioners), 1 ed.: Wiley-IEEE Computer

Society Pr, 1996, p. 392

[2] R. S. Arnold, "The Year 2000 problem: Impact, Strate-

gies and Tools", Software Evolution Technology, Inc.

Tech. Report February 1996.

[3] J. Biehl, M. Czerwinski, G. Smith, et al., "FASTDash: A

Visual Dashboard for Fostering Awareness in Software

Teams", SIGCHI conference on Human Factors in

computing systems, San Jose, California, USA, 2007,

pp. 1313-1322.

[4] C. Bird, D. Pattison, R. D'Souza, et al., "Chapels in the

Bazaar? Latent Social Structure in OSS", in 16th ACM

SigSoft International Symposium on the Foundations of

Software Engineering, Atlanta, GA, 2008, (to appear).

[5] M. Cataldo and J. Herbsleb, "Communication Networks

in Geographically Distributed Software Development",

Computer Supported Cooperative Work, San Diego,

California, USA, 2008, pp. 579-588.

[6] M. Cataldo, P. Wagstrom, J. D. Herbsleb, et al., "Identi-

fication of Coordination Requirements: Implications for

the Design of Collaboration and Awareness Tools",

ACM Conference on Computer Supported Cooperative

Work, Banff, Alberta, Canada, 2006, pp. 353-362.

[7] D. Cubranic, G. C. Murphy, J. Singer, et al., "Hipikat: A

Project Memory for Software Development", IEEE

Transactions on Software Engineering, vol. 31, June

2005, pp. 446-465.

[8] C. R. B. de Souza, S. Quirk, E. Trainer, et al., "Support-

ing Collaborative Software Development through the

Visualization of Socio-Technical Dependencies", Inter-

national ACM SIGGROUP Conference on Supporting

Group Work Sanibel Island, FL, 2007, pp. 147-156.

[9] C. R. B. de Souza and D. Redmiles, "An Empirical

Study of Software Developers' Management of Depend-

encies and Changes", Thirteeth International Confer-

ence on Software Engineering, Leipzig, Germany, 2008,

pp. 241-250.

[10] R. DeLine, A. Khella, M. Czerwinski, et al., "Towards

Understanding Programs through Wear-Based Filter-

ing", ACM Symposium on Software Visualization, St.

Louis, Missouri, 2005, pp. 183-192.

[11] P. Dewan and R. Hegde, "Semi-Synchronous Conflict

Detection and Resolution in Asynchronous Software

Development", Conference on European Computer

Supported Cooperative Work, Limerick, Ireland, 2007,

pp. 159-178.

[12] J. Froehlich and P. Dourish, "Unifying Artifacts and

Activities in a Visual Tool for Distributed Software De-

velopment Teams", International Conference on Soft-

ware Engineering, Edinburgh, UK, 2004, pp. 387-396.

[13] E. Gilbert and K. Karahalios, "CodeSaw: A Social Vi-

sualization of Distributed Software Development", Hu-

man-Computer Interaction – INTERACT, 2007, pp.

303-316.

[14] GNOME - The Free Software Desktop Project.

http://www.gnome.org/.

[15] R. E. Grinter, "Recomposition: Putting It All Back To-

gether Again", ACM conference on Computer supported

cooperative work, Seattle, Washington, USA, 1998, pp.

393-402.

[16] R. E. Grinter, J. D. Herbsleb, and D. E. Perry, "The

Geography of Coordination: Dealing with Distance in

R&D Work", ACM Conference on Supporting Group

Work, Phoenix, AZ, 1999, pp. 306-315.

[17] C. Gutwin and S. Greenberg, "The Effects of Workspace

Awareness Support on the Usability of Real-Time Dis-

tributed Groupware," Transactions on Computer-

Human Interaction vol. 6, September 1999, pp. 243-

281.

[18] C. Gutwin, R. Penner, and K. Schneider, "Group

Awareness in Distributed Software Development", ACM

conference on Computer Supported Cooperative Work,

Chicago, Illinois, USA, 2004, pp. 72-81.

[19] J. Herbsleb and R. E. Grinter, "Splitting the Organiza-

tion and Integrating the Code: Conway's Law Revis-

ited", Proceedings of the 21st international conference

on Software engineering, Los Angeles, CA, USA, 1999,

pp. 85-95.

[20] M. Kersten and G. C. Murphy, "Using Task Context to

Improve Programmer Productivity", Fourteenth ACM

SIGSOFT International Symposium on Foundations of

Software Engineering, Portland, Oregon, USA, 2006,

pp. 1-11.

[21] A. Meneely, L. Williams, W. Snipes, et al., "Predicting

Failures with Developer Networks and Social Network

Analysis", ACM SIGSOFT International Symposium on

the Foundations of Software Engineering, Altanta, GA,

2008, (to appear).

[22] A. Mockus and J. Herbsleb, "Expertise Browser: A

Quantitative Approach to Identifying Expertise", Inter-

national Conference on Software Engineering, Orlando,

FL, 2002, pp. 503-512.

[23] D. L. Parnas, "On the Criteria To Be Used in Decom-

posing Systems into Modules," Communications of the

ACM, vol. 15, 1972, pp. 1053-1058.

[24] D. E. Perry, H. P. Siy, and L. G. Votta, "Parallel

Changes in Large-Scale Software Development: An Ob-

servational Case Study," ACM Transactions on Soft-

ware Engineering and Methodology, vol. 10, 2001, pp.

308-337.

[25] A. Sarma, Z. Noroozi, and A. van der Hoek, "Palantír:

Raising Awareness among Configuration Management

Workspaces", Twenty-fifth International Conference on

Software Engineering, Portland, Oregon, USA, 2003,

pp. 444-454.

[26] T. Schümmer and J. M. Haake, "Supporting Distributed

Software Development by Modes of Collaboration", Se-

venth European Conference on Computer Supported

Cooperative Work, 2001, pp. 79-98.

[27] M. E. Sosa, S. D. Eppinger, and C. R. Rowles, "The

Misalignment of Product Architecture and Organiza-

tional Structure in Complex Product Development,"

Management Science, vol. 50, December 2004, pp.

1674-1689.

[28] S. Wasserman and K. Faust, Social Network Analysis:

Methods and Applications (Structural Analysis in the

Social Sciences), 1 ed.: Cambridge University Press,

1994, p. 857.

[29] W. D. Weber, "Change Sets versus Change Packages:

Comparing Implementations of Change-Based SCM",

Seventh International Workshop on Software Configu-

ration Management, 1997, pp. 25-35.

