
A Network of Rails
A Graph Dataset of Ruby on Rails and Associated Projects

Patrick Wagstrom
IBM TJ Watson Research Center

Yorktown Heights, NY, USA
pwagstro@us.ibm.com

Corey Jergensen and Anita Sarma
Computer Science and Engineering

University of Nebraska – Lincoln, Lincoln, NE, USA
{cjergens, asarma}@cse.unl.edu

Abstract—Software projects, whether open source, proprietary,
or a combination thereof, rarely exist in isolation. Rather, most
projects build on a network of people and ideas from dozens,
hundreds, or even thousands of other projects. Using the GitHub
APIs it is possible to extract these relationships for millions of
users and projects. In this paper we present a dataset of a large
network of open source projects centered around Ruby on Rails.
This dataset provides insight into the relationships between Ruby
on Rails and an ecosystem involving 1116 projects. To facilitate
understanding of this data in the context of relationships between
projects, users, and their activities, it is provided as a graph
database suitable for assessing network properties of the
community and individuals within those communities and can be
found at https://github.com/pridkett/gitminer-data-rails.

Index Terms—Data, GitHub, Ruby on Rails, Graph Databases

I. INTRODUCTION
While it is possible to gain significant insights into the

mechanisms of software engineering and open source software
development by studying a single monolithic project, almost all
software projects include portions or the entirety of other
software projects. Sometimes these secondary projects
implement critical aspects of a project, for example the use of
WebKit (an HTML rendering engine) in the Chromium and
Safari web browsers. Other times they provide infrastructure
for the building and management of the project, such as Maven
and Jenkins. Even if a project uses only self-contained code
and has no external dependencies it still is influenced by other
software projects that a developer has experienced – whether
through coding standards or through social norms around
project development. No project exists as an island and to
succeed, the ecosystem in which the project exists is equally
important as the project itself.

During its genesis the open source community quickly
realized this fact and projects began to coalesce into
communities around open source foundations such as Apache
and GNOME. These communities provided the mailing lists,
bug tracking, source code management, and web page
infrastructures that projects needed to survive [1]. Projects that
weren’t members of a foundation because of a lack of
alignment, personal choice, maturity, or a variety of other
reasons, were often hosted on large source code hosting sites,
the most dominant of which was SourceForge.

SourceForge was novel in that it allowed a user with a
single account to develop on many seemingly unrelated

projects. It was possible for the first time to determine the
breadth of contribution that a person made across a wide
variety of projects that were hosted on SourceForge. However,
other critical elements of the open source ecosystem,
particularly bug trackers, were not traditionally as cleanly
integrated. Therefore, while it was possible to build a network
of co-developers between projects, it took significant effort to
build anything more robust.

The launch of GitHub dramatically changed the landscape
of these hosting sites in a number of ways. The first is
providing a unified environment for source code and bug
tracking together in the same platform. Second, through the use
of forks (creating a copy of the repository for personal
development), GitHub makes visible the development that
occurs outside of the main development branch, even if a user
has never pushed their changes back to the main repository but
instead works on the code independently.

GitHub also introduced a novel mechanism for managing
code contributions from external users. Previously, projects
often relied on ad-hoc patch management through mailing lists,
which could result in patches being ignored or misplaced in the
triaging process. The Pull Request mechanism within GitHub
allows a developer to formally request that their changes be
integrated into the main project. This mechanism is much more
robust than sending a patch through the mailing list as it treats
the Pull Request as a first order entity and allows individuals to
comment on them or individual lines of code thus preserving
the discussion. This provides a provenance for the code that is
integrated into a project and also makes the authors of the code
apparent.

GitHub also added two major new “social” features: the
ability to star (previously called “watch”) a project and the
ability to follow users. Starring a project means that when a
users visits their dashboard they’ll see updates about the
projects in their feed. Following a user aggregates that user’s
activities in their dashboard. Together these allow users to
signal their interest in a project (or a developer) without being
required to formally contribute to a project.

Finally, GitHub provides an API that allows a relatively
easy mechanism for accessing the above information. These
APIs allow users to download accurate information while being
respectful of GitHub’s constraints (e.g. maximum number of
requests per hour).

We developed a tool called GitMiner [2] that by using the
GitHub APIs downloads information (to the extent allowed)

978-1-4673-2936-1/13 c© 2013 IEEE MSR 2013, San Francisco, CA, USA

Accepted for publication by IEEE. c© 2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

229

about a set of projects and users from GitHub and then stores
the data in a graph database. GitMiner has a small but growing
community of researchers across the world that use and
contribute to the tool (currently six institutions). However, even
with the availability of GitMiner, downloading the data takes
significant time, especially because of the API limits regarding
the number of requests allowed per hour. We, therefore, have
made available a dataset representing a software ecosystem
around the Ruby on Rails project, which includes a sample of
more than 1116 associated projects [3].

II. GITMINER
We downloaded the data from GitHub by using GitMiner,

which was jointly developed by the University of Nebraska-
Lincoln and IBM Research. When given a particular project or
a user GitMiner connects to GitHub using the GitHub API and
downloads all available information about the project or the
user. It then downloads copies of the source code repositories
and analyzes all commits made by the users associated with the
project. This data is then stored in an underlying graph data-
base, as opposed to a more traditional relational database. This
architecture is well suited for understanding networks of de-
pendencies between projects and localized searches of individ-
ual user activity.

GitMiner can be thought of as a compliment to the work of
Ilya Grigorik on the GitHub Archive [4]. While GitMiner fo-
cuses on a single project, user, or sets thereof, and dives as
deep as possible, GitHub Archive attempts to poll the GitHub
main feed as often as possible for information about recent
events. GitHub Archive captures only information about activi-
ties in the past few moments, and thus needs to constantly poll
GitHub or risk losing data (and even still may lose data when
there are unexpected spikes in activity on GitHub). This strat-
egy is useful if one would like to examine the current activity
across all of GitHub, in which cases gaps in the data may be
acceptable for some periods. However, as a result of this strat-
egy, the only data available through the GitHub Archive is
from mid February 2011, the start of the project.

GitMiner, in contrast focuses only on a single project or set
of projects and downloads their entire history, including some
elements not exposed in the GitHub events stream. However,
as GitMiner uses the GitHub APIs it has some constraints, no-
tably among them is the maximum number of API requests per
hour, which is currently fixed at 5000 for most purposes. A
large dataset can then take slightly over a month in order to
download.

III. DATA DESCRIPTION AND COLLECTION
The datasets we present was collected at the beginning of

May 2012 and has since been used for research on a variety of
different topics. Although the data presented is approximately a
year old, GitMiner has the functionality to update previous data
sets with newer data.

The GitHub API is able to return the following elements
(see Table I for a summary of the data points) that are captured
by GitMiner and presented in this dataset.

• Repository: One of the central elements in the data. A re-
pository (e.g. rails/rails) represents a top level project on
GitHub and also corresponds to the underlying version con-
trol system archive for the project.

• File: A single file that resides in a git repository. Usually
connected to a Commit, but sometimes referenced from an
Issue or Pull Request.

• Commit: A single commit in the git version control system. It
is used to link an author, set of files, and repository together.

• Gist: A small piece of code that a user has posted to GitHub.
It is possible to fork and modify a gist, but they lack the rest
of the infrastructure provided to projects.

• Pull Request: A request by one user that a project “pull”
some of their code into the main branch.

• Pull Request Marker: A reference to a portion of a Pull
Request. Usually used for making comments about a Pull
Request.

• Issue: An item in GitHub’s issue tracker.
• Issue Event: An event applied to an Issue in GitHub’s is-

sue tracker (e.g. open, close, etc.).
• Label: A tag that can be applied to an issue for the purpose

of managing categories of issues.
• Milestone: A tag that can be applied to an issue for the pur-

pose of managing the software development process (e.g.
scheduling a issue to be addressed during a sprint).

• Comment: A message written by a user in reference to an Is-
sue, Pull Request, or line of code.

• User: Another central element in the data. A User represents
an account within GitHub.

• Git User: An individual who is affiliated with commits in a
git repository. Because git provides a complete provenance
chain a single GitHub user will often show up as multiple
different Git Users, particularly if they have changed email
addresses.

• Gravatar: A processed hash of a users email address that can
be used to retrieve an image of a user. This is also used to
map some Git Users to User accounts.

• Name: The actual name of a user. Often times users will have
slightly different names on multiple git commits while re-
taining the same email address. This mechanism allows for
creating consistency across commits.

• Email: A single record of an email address. Connects to a
Gravatar and sometimes a Git User or User node.

• Event: The GitHub API provides the last 200 actions a User
has performed on the system. For select users (core contribu-
tors in Ruby on Rails, see below), this information is stored.

To collect the dataset, we started with the Ruby on Rails
project, which is one of the largest and most successful projects
on GitHub. We then spidered out to projects in which contribu-
tors from Ruby on Rails were also participating. To keep the
dataset manageable, when spidering out we only consider par-
ticipation by “core contributors” from Ruby on Rails; where
core contributors are defined as users who are in the top 20% of
code commits or issue management. We then identified (other)
projects that these users were contributing to (had commit ac-
cess), projects that they starred (“watched the project”), or oth-

230

other activities and collected the data on these projects. This
method led to a dataset of 1116 repositories [3].

Although the GitHub API provides robust mechanism to re-
trieve most data, there were some locations where identifica-
tion was difficult. The matching of commits to the GitHub ac-
counts of their authors was one such challenge. Many users
chose not to make their email addresses public, in which case
GitHub returns only the md5 hash of their address that can then
be used to obtain their Gravatar. Calculating the md5 hash of
the email address for every commit allowed us to link up many
of the commits with the corresponding GitHub user, but not all
of them. In particular, many repositories that started as local
repositories without a properly configured git client have in-
consistent user email addresses. In these cases, a perfect match
with another name that had committed to the same repository
was used to link these commits together. However, sometimes
even this was not enough. We finally discovered that in some
cases it is possible to obtain additional information about alter-
nate names of users and email addresses by examining the
event history of users, their pull requests, and comments, all of
which can be linked to commits in a git archive. Using these
mechanisms we are reasonably certain that users are properly
associated with their contributions.

TABLE I. OVERVIEW OF DATA

Dates Collected May 5 – May 30, 2012
Dataset Size 8.4GB

Total Nodes 4800596

Total Edges 18455346

Seed Projects 1116

COMMENT 194714 ISSUE 86995
COMMIT 862349 ISSUE_EVENT 154977
EMAIL 66003 LABEL 1714
EVENT 1301734 MILESTONE 145
FOLLOWER 739848 NAME 27655
FOLLOWING 787545 PULL_REQUEST 41793
FILE 420579 PULL_REQUEST

_MARKER
67764

GIST 24464 REPOSITORY 1016672
GIT_USER 33300 USER 286000

IV. ACCESSING AND MANIPULATING THE DATA
In contrast to relational databases that utilize SQL, the data

in this dataset and all datasets produced by GitMiner are stored
in a graph database. More specifically, this dataset is provided
as a Neo4j database that can be copied between machines and
loaded into an embedded Neo4j instance, Neo4j server, or a
variety of other tools that can expose graph databases, such as
Rexster, which provides REST interfaces to graph databases.

Similar to various document databases such as CouchDB
and MongoDB, a graph database is schemaless. It consists of a

set of elements, each of which may either be a node or an edge.
An edge connects two nodes and is always directed and has a
(required) label to denote the type of relationship the edge ex-
presses. If a pair of nodes has multiple different types of rela-
tionships then multiple edges with different labels may be used
between the nodes. The full overview and distribution of edges
and nodes is provided with the dataset.

In most cases graphs are accessed using query languages
that execute a traversal. Instructions are provided that set the
node or collection of nodes to begin at, specify a series of
edges to traverse, and then return a collection of values back to
the user. For example, the Neo4j database has a built in tra-
versal language called Cypher and Tinkerpop provides a graph
database agnostic language called Gremlin. While both are
sufficient for traversing the data, for the purposes of describing
this dataset we provide instructions using Gremlin [5].

This first snippet of code opens up a connection to the em-
bedded Neo4j database and then retrieves the vertices that rep-
resent Ruby on Rails and Jose Valim, a core contributor to
Ruby on Rails. For the purpose of this example we’re not pro-
viding any special tuning to Neo4j, so initial traversals are
much slower until the database cache has been primed.
gremlin> g = new Neo4jGraph("rails.db.20120505")
==>neo4jgraph[EmbeddedGraphDatabase
[/Users/msr/rails.db.20120505]]
gremlin> rails = g.idx("repo-idx"). \
gremlin> get("reponame","rails/rails").first()
==>v[1]
gremlin> jv = g.idx("user-idx"). \
gremlin> get("login","josevalim").first()
==>v[30]

Fig. 1. Traversal to Identify Comment Owners from a Repository

Next we’d like to actually look at some of the relationships,
for example, the number of comments on an issue authored by
Jose Valim. In the database a REPOSITORY is connected to an
ISSUE with an outgoing edge labeled ISSUE. ISSUEs are con-
nected to ISSUE_COMMENTs with an outgoing edge labeled IS-
SUE_COMMENT. Here we first count the number of issues filed
against rails in the dataset and then count the number of com-
ments on those issues, and finally we count only the comments
on issues that were authored by Jose Valim. The general pat-
tern of the traversal and the direction of the edges can be seen
above in Fig. 1. and in the code snippet follows.
gremlin> rails.out("ISSUE").count()
==>6324
gremlin>
rails.out("ISSUE").out("ISSUE_COMMENT").count()
==>24310
gremlin> rails.out("ISSUE").out("ISSUE_COMMENT"). \
gremlin> in("ISSUE_COMMENT_OWNER").filter{it==jv}. \
gremlin> count()
==>1560

231

Next, we find out the number of commits by Jose Valim.
As explained earlier we use a combination of email address and
Gravatar to determine this information. This traversal can run
in both directions, as shown below, simply by changing the
starting vertex and the direction of the edges. A visual repre-
sentation of the traversal is shown in Fig. 2.
gremlin> rails.in("REPOSITORY").out("AUTHOR"). \
gremlin> out("EMAIL").out("GRAVATAR_HASH"). \
gremlin> in("GRAVATAR").filter{it==jv}.count()
==>2316
gremlin> jv.out("GRAVATAR").in("GRAVATAR_HASH"). \
gremlin> in("EMAIL").in("AUTHOR"). \
gremlin> out("REPOSITORY").filter{it==rails}.count()
==>2316

Fig. 2. Traversal to Identify Commits

As a final example, we obtain a list of all the repositories
that Jose Valim has committed code to. One of the tricky things
about this query is that many repositories are forks of the main
rails repository, so this will result in numerous extra reposito-
ries for which there may have been no actual action (although,
there are serious caveats about this as described by Bird et al.
[6]). To accomplish this we look only for repositories that have
the property isFork set to false, remove duplicates with the
dedup option, and then just return their names.
gremlin> jv.out("GRAVATAR").in("GRAVATAR_HASH"). \
gremlin> in("EMAIL").in("AUTHOR"). \
gremlin> out("REPOSITORY").has("isFork",false). \
gremlin> dedup().reponame
==>rails/rails
==>erlang/otp
==>brynary/webrat
==>jm/rails_upgrade
==>cassiomarques/booleanize
==>elixir-lang/elixir-lang.github.com
==>elixir-lang/elixir
==>ianwhite/orm_adapter
==>plataformatec/devise
==>plataformatec/has_scope
==>lifo/docrails
==>dolzenko/windows_protocol_handlers

V. ADVANTAGES AND DISADVANTAGES OF APPROACH
As Grigorik’s work with GitHub Archive has shown, man-

aging extremely large datasets is problematic. Typical rela-
tional database systems tend to break down because of causes
such as dynamic schema changes, large volumes of data, and
increasing difficulty in managing the various systems required
to store and query large datasets. We realized in the construc-
tion of this dataset and the tooling for GitMiner that most of
our queries were localized in small areas around a project or a

set of users and that these queries were often replicated across a
large number of projects or users.

GitMiner therefore allows the use of distributed graph data-
bases, such as Titan, to take advantage of this. Different nodes
can be automatically placed on servers where we can distribute
multiple parallel queries across a cluster of machines. By tak-
ing advantage of data locality we can easily run analysis of
many projects at the same time with minimal additional effort.

However, the use of graph databases presents unique chal-
lenges. The first challenge is that graph databases require a
paradigm shift in thinking about relations and queries. The lack
of a fixed schema and the networked nature means that devel-
opers must first learn to map queries to traversals, which can be
difficult.

Second, graph databases require more care to properly
scale. Although it is possible to take advantage of data locality
and partition a graph across multiple nodes in a Hadoop cluster
for parallel data analysis, this can be challenging especially for
densely connected network of projects. In these cases a poorly
laid out network topology will result in poor performance.

Finally, although not exclusively a problem with Graph da-
tabases, for some elements GitMiner only provides a snapshot
of the data. This is particularly evident when examining users
who have watched/starred a project. The API in this case does
not provide the date when a user either stars or un-stars a re-
pository. This makes it difficult to understand the evolution of
the social action of starring a repository without taking frequent
snapshots of the repository and comparing those snapshots.

VI. FUTURE EXTENSIONS TO DATASET
GitMiner is designed to seamlessly update datasets when

new information becomes available. Using the same configura-
tion file a researcher can download newer data about projects
and the new database will automatically reflect the state of the
project. Each of the nodes and edges in the database is tagged
with a property, sys_last_updated, that tells when the dataset
was last updated.

ACKNOWLEDGMENT
This work was funded by NSF grants CCF 1016134 and IIS
1110916.

REFERENCES
[1] German, “Software Engineering Practices in the GNOME Project,” in

Perspectives on Free and Open Source Software, J. Feller, et al., eds.
MIT Press, 2005, pp. 211–226.

[2] P. Wagstrom, C. Jergensen, and A. Sarma. “GitMiner”. Available from:
https://github.com/pridkett/gitminer. 2013. Last Visited: Feb. 8, 2013.

[3] P. Wagstrom, C. Jergesensen, and A. Sarma. “Rails GitMiner Dataset”.
Available from: https://github.com/pridkett/gitminer-data-rails. 2012.
Last Visited: Feb. 8, 2013.

[4] I. Grigorik, “GitHub Archive”. Available from:
http://www.githubarchive.org/. 2012. Last Visited: Feb. 8, 2013.

[5] M. Rodriguez et al. “Gremlin” Available from:
https://github.com/tinkerpop/gremlin. Last Visited: February 8, 2013.

[6] Christian Bird, Peter C. Rigby, Earl T. Barr, David J. Hamilton, Daniel
M. German, and Prem Devanbu. 2009. The promises and perils of
mining git. 6th IEEE International Working Conference on Mining
Software Repositories (MSR '09). 1-10.

232

