
COMMUNICATIONS OF THE ACM October 2006/Vol. 49, No. 10 55

oordination, or the management of dependencies among
tasks, can be accomplished in a number of ways in soft-
ware development projects. Coordination mechanisms
include such things as a defined software process, a well-
documented software architecture, and detailed project
planning. Agile methods tend to eschew these formal
coordination mechanisms in favor of frequent, intensive,
informal communication among team members and
with the customer.

Research has consistently shown, however, that commu-
nication across sites in geographically distributed projects is severely attenu-
ated compared to communication in co-located projects. This strongly
suggests that in order for agile methods to be effective in distributed projects,
great care must be taken to ensure that the necessary communication takes
place. Agile methods encourage very short planning horizons, and the

DEPENDENCY
FORECASTING
IN THE DISTRIBUTED AGILE ORGANIZATION

C

By PATRICK WAGSTROM and JAMES HERBSLEB

56 October 2006/Vol. 49, No. 10 COMMUNICATIONS OF THE ACM

dependencies that drive the need to communicate
may shift frequently depending on the content of
each delivery increment.

One way to identify dependencies that trigger the
need to communicate is through extraction from the
project code. Traditional depen-
dency methods—identifying com-
mon data structures and calls—are
labor intensive and may capture
only a subset of the important
dependencies. We have found that
using an automated system that
builds links strictly on whether or
not developers have modified the
same file produces excellent results
at little cost to project staff. In this
model, a time window, such as the
last two weeks, is chosen based on
the frequency of team change in the organization.
Any two developers who have modified the same file
in the time window are assumed to have a need to
coordinate their work, and are given a link in the out-
put. As a project progresses, the time window is
shifted and new dependency graphs help visualize
new dependencies and identify possible communica-
tion breakdowns.

The diagram here was automatically built from the
version control system of a distributed commercially
backed open source desktop application. The project
is several years old and has contributions from hun-
dreds of individuals. The two images correspond to
two non-overlapping and consecutive two-week
intervals of project development. During the first
time period, the project focused on plug-in module
development, the second time period was a coordi-
nated effort to enhance the core of the program. Each
node in the graph represents a developer and lines
connect a pair of developers if they worked on the
same file. To ease analysis, the position of nodes is
kept constant when comparing time periods.

In this organization, as the focus changed from
plug-ins to core, the anticipated communication
dependencies also increased—as emphasized by the
six developer clique, marked with x’s, in the second
time period. Because this organization is distributed,
extra efforts are required to ensure that dependencies
are known and communicated. These could include
new email policies and teleconferences for the distrib-
uted members. In this case, core development team
meetings should incorporate all developers in the
clique regardless of whether or not they were assigned
to the team.

While for this project we computed these networks
based on changes made to files during the two-week

period, it is also possible to generate networks that
predict interaction and coordination needs. For
example, one can use prior change history to con-
struct a network where files that were changed in the
same modification request are linked together. This is

a good proxy of the dependencies between these two
files. When combined with a network view of who
modified each file, a tool can be used to construct a
graph representing who needs to coordinate with
whom during the current iteration as soon as devel-
opers check out files for editing.

Given the degree to which agile methods rely on
frequent communication in order to coordinate proj-
ect work and the degree to which the coordination
requirements change over time, it can be daunting to
ensure sufficient communication and coordination
across all channels. Taking a network-level view
allows automated generation and visualization of
these complex dependencies—reducing management
overhead while increasing efficiency. We believe that
as distributed agile development increases these tools
will be essential for understanding communication
needs, establishing project teams, and ensuring over-
all project success.

Patrick Wagstrom (pwagstro@andrew.cmu.edu) is a Ph.D.
candidate in the Computation, Organizations, and Society Program
and the Department of Engineering and Public Policy at Carnegie
Mellon University, Pittsburgh, PA.
James Herbsleb (jdh@cs.cmu.edu) is the Nico A. Haberman Asso-
ciate Professor of Computer Science and the director of the
Software Industry Center at Carnegie Mellon University, Pittsburgh, PA.

Permission to make digital or hard copies of all or part of this work for personal or class-
room use is granted without fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this notice and the full citation on
the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee.

© 2006 ACM 0001-0782/06/1000 $5.00

c

Wagstrom Herbsleb fig.1 (10/06)

Period 1 Period 2

X X
X

X
X

X

