
Individualized Socio-Technical Congruence

Patrick Wagstrom
Engineering and Public Policy

Carnegie Mellon University
5000 Forbes Ave

Pittsburgh, PA, 15213 USA
pwagstro@andrew.cmu.edu

James Herbsleb
Institute for Software Research

Carnegie Mellon University
5000 Forbes Ave

Pittsburgh, PA, 15213 USA
jdh@cs.cmu.edu

ABSTRACT
At a macro level, congruence between a team’s actual com-
munication and coordination dependencies, a metric called
socio-technical congruence (STC), is related to higher team
performance. However, at an individual level, the calcu-
lation of STC may seem opaque, leaving individuals con-
fused about how their communication patterns affect the
STC metric and impact overall team performance. We pro-
pose two methods of calculating individualized STC based
on previous work in the field. Examining this relationship
further, we find that when the individualized STC metrics
are broken into their constituent parts, individuals with high
amounts of coordination requirements tend to have higher
performance, while individuals with higher levels of commu-
nication have lower performance.

1. INTRODUCTION
Complex non-routine intellectual work, such as software

engineering, is comprised of many tasks with large amounts
of explicit and implicit dependencies. Accomplishing these
complex tasks successfully requires individuals to collabo-
rate not only with those on their assigned tasks, but also
with individuals working on related tasks. By examining the
network of task dependencies and individuals who worked
on each task, a network of required communication is cre-
ated. Work comparing networks of required communica-
tion to the actual communication in organizations, a metric
called socio-technical congruence (STC), found that teams
with high congruence had increased performance, as mea-
sured by a decrease in software defect resolution time[2].

This original formulation of STC treated all links as equal
– meaning that the frequency of communication and amount
of required communication between individuals was not taken
into account when calculating a score. Later, a reformu-
lation of STC in a graph theoretic framework provided a
method to address valued edges in a network and also laid
the foundation for providing meaning to values in the net-
work[5]. From a functional perspective, when a network

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
STC 2008 Leipzig, Germany
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

consists of binary only values, these two methods are iden-
tical and make similar claims about the impact of STC on
overall team performance.

More recently, there has been increased interest in provid-
ing tools for end users to gain awareness of the overall com-
munication and coordination network structure and guide
users toward improving overall communication and congru-
ence[1]. For a user to take the time to utilize such a tool,
there must be sufficient individual benefit to overcome the
cost of learning and utilizing the tool. In the case of STC,
the output metric is provided only at the team level, leaving
little context for an individual to understand their role in im-
proving coordination within the team. In this work, we pro-
pose two new metrics to help individuals better understand
congruence: Unweighted Individual Congruence (UIC) and
Weighted Individual Congruence (WIC). We then provide
analysis of the metrics and address possible issues with tools
that attempt to increase overall congruence and the impli-
cations for individualized congruence.

2. MATHEMATICAL FOUNDATION
For the purposes of this work, we utilize the original no-

tation and formulation of the STC metric as provided by
Cataldo et. al. although the method could be easily trans-
lated to a graph theoretic framework[2]. Briefly, given a
team with a network of task dependencies, D, such that
Di,j = 1 if there is a dependency between task i and j, or 0
otherwise, and a network of task assignments, A, such that
Ai,j = 1 if developer i was assigned to task j we can calcu-
late the coordination requirements CR = A×D×AT. The
overall congruence of the network is then calculated as the
proportion of edges that exist in CR that are also observed
in an actual communication network, CA.

Unweighted Individual Congruence, UIC is calculated in a
very similar method to overall STC. A coordination require-
ments matrix CR is generated for the entire network as is
the actual coordination matrix CA. Unweighted individual
congruence for an individual is then calculated by observing
the congruence between CR and CA only for those edges in
CR that are incident upon the person in question. Formally,
for an ego i, we have:

UICi =

P
(CR[i,]×CA[i,]) +

P
(CR[, i]×CA[, i])P

CR[i,] +
P

CR[, i]
(1)

We assume for this equation that all cells in the matrices
have been dichotomized to 0,1 and that diagonals are zero.
All multiplications of vectors are pairwise multiplications
and CR[i,] and CA[i,] represent row i of their respective

networks in matrix form.
Weighted individual congruence is slightly more compli-

cated, a weighted coordination requirements matrix CR is
generated by not dichotomizing the result of A×D×A ma-
trix. Formally the individual weighted congruence, WIC for
ego i can be expressed as:

WICi =

P
(CR [i,]× d (CA [i,])) +

P
(CR [, i]× d (CA [, i]))P

d(CR [i,]) +
P
d(CR [, i])

(2)
Where d(x) represents dichotomizing matrix x to 0,1 such
that all cells > 0 are set to 1, the multiplications are element
wise multiplications, and we assume zero along the diagonals
for both CR and CA.

There are some clear similarities between the two metrics,
in particular, the denominator, which represents the num-
ber of instances of required communication, is the same in
UIC and WIC. The difference between these two metrics
is subtle, but very important. UIC is functionally a sub-
set of the original STC metric where examination is done
only for a single person and produces a value between 0
and 1, inclusive. WIC results in higher values if commu-
nication was observed between ego i and those individuals
with whom more coordination requirements exist. In this
way, WIC captures not only whether or not communication
was present, but also whether or not the communication
addresses coordination needs.

3. PRELIMINARY RESULTS
For this work, we examined the interactions of a large

Open Source software community, the GNOME desktop en-
vironment. Although there are number of commercial firms
participating in the community, most project teams are highly
distributed, having no more than a handful of developers
present at each location. The community has established
norms that prefer communication to go across mailing lists
– however, not to the degree of the Apache project which re-
quires all decisions to be made of the mailing lists. For more
background, we direct the reader to German’s description of
this community[4].

We collected data from 10 different projects in the com-
munity. Projects were selected based on their age, number
of developers contributing code, and overall community size.
All projects were between five and ten years old, had at least
25 developers, and had archived mailing lists and a publicly
accessible bug tracker. The projects varied widely in their
goals – an email client, web browser, music player, and sev-
eral system libraries were included in the sample.

For the purposes of generating data, we broke each of the
projects into six month time periods that correspond to the
release cycle of the community. Tasks within each project
were mapped to source code files, filtering out automatically
generated files, documentation, graphics, and other files that
are not generally considered to be code. The task assign-
ment matrix, A, was generated through an examination of
version control system logs for each project at each time pe-
riod. An edge was present between a developer and task if
the developer had modified that file at a time prior to that
time period. The task dependency matrix D was calculated
by looking at files that were committed together at any time
prior to the time period – filtering out bulk operations af-
fecting more than 20 files1.

1It was found that operations on large numbers of files were

Unweighted Individual Congruence Score

O
bs

er
ve

d
C

ou
nt

0.0 0.2 0.4 0.6 0.8 1.0

0
10

0
30

0
50

0

Figure 1: Histogram of Average Unweighted Indi-
vidual Congruence (UIC) by Bug Report

Weighted Individual Congruence Score
O

bs
er

ve
d

C
ou

nt

0 100 200 300 400

0
40

0
80

0
12

00

Figure 2: Histogram of Average Weighted Individ-
ual Congruence (WIC) by Bug Report

The actual communication network, CA was calculated
via an examination of archived bug reports and mailing
lists. An edge was placed in CA if two developers had di-
rectly communicated through an archived email message or
by posting comments in the bug tracking system. This net-
work was treated as a dichotomous network. Such a method
of building networks misses large scale face to face planning
events that occur at project conferences. However, the im-
pact of long range planning and discussion on fixing individ-
ual bugs later down the line is likely small. These networks
also miss interactions which may take place over non-logged
chat, while such data is very valuable, the norms of the com-
munity request that communication be preserved through
archived communication, such as mailing lists.

After calculating UIC and WIC for each project at each
time period, We note that there is high correlation between
UIC and WIC, approximately 0.9, which is to be expected,
given their very similar derivations. We also compared these
values to the number of instances of required communica-
tion, ReqComm, for each developer as measured in the de-
nominator from equation 1 and 2. These correlations were
0.37 and 0.47 respectively – indicating a loose relationship
between high levels of coordination requirements and actual
communication. The distribution of each of the metrics can
be seen in figures 1–3.

The unit of inquiry in the model is bug reports that were

almost always maintenance tasks, such as updating copy-
rights, or moving files around, and had little to do with
technical activity in the project.

Number of Required Communication Instances

O
bs

er
ve

d
C

ou
nt

0 2 4 6 8 10 12 14

0
20

0
40

0
60

0

Figure 3: Histogram of Average Number of Commu-
nication Requirements, (ReqComm) by Bug Report

Table 1: Analyzing the Impact of Unweighted Indi-
vidual Congruence (equation 3)

Variable Estimate Std Err P
Intercept 1.484 0.145 <.001

NumDevs 1.301 0.088 <.001
UIC -0.583 0.167 <.001

resolved as “Fixed” and had patches associated. The de-
pendent variable in the model is the log2 of the time to
resolve bugs as measured in days. To help control for com-
plicated bugs, we also note the number of developers active
on each bug. For each bug, we calculated the values of UIC
and WIC for each developer active on the bug, and average
these values by bug to determine the overall UIC and WIC
for each bug. In most cases (80%) there was only one de-
veloper assigned to the bug, but frequently more developers
participated in discussion. There were 5800 bugs for which
we had complete data in the data set. The regression equa-
tions can be seen in equation 3 and 4 and the results can be
seen in table 1 and 2

log2(ResolutionT ime) = β0+β1NumDevs+β2UIC+ε (3)

log2(ResolutionT ime) = β0 + β1NumDevs+ β2WIC + ε
(4)

The results indicate that in both cases, the higher the in-
dividual congruence of the developers working on a bug, the
lower the time to resolution. As expected, the more develop-
ers involved with the bug, the greater the time to resolve the
bug. We find that UIC has a more pronounced effect, while
WIC has much less of an effect at least by looking at the co-

Table 2: Analyzing the Impact of Weighted Individ-
ual Congruence (equation 4)

Variable Estimate Std Err P
Intercept 1.542 0.127 <.001

NumDevs 1.382 0.088 <.001
WIC -0.003 0.000 <.001

Table 3: Analyzing the Impact of Unweighted Indi-
vidual Congruence and Communication Opportuni-
ties

Variable Estimate Std Err P
Intercept 2.761 0.148 <.001

NumDevs 1.509 0.086 <.001
ActualCommU 0.061 0.024 0.009

ReqComm -0.302 0.022 <.001

Table 4: Analyzing the Impact of Weighted Individ-
ual Congruence and Communication Opportunities

Variable Estimate Std Err P
Intercept 2.700 0.147 <.001

NumDevs 1.501 0.086 <.001
ActualCommW -0.001 0.000 0.403

ReqComm -0.255 0.017 <.001

efficient, but given the unbounded maximum of WIC, high
weighted individual congruence may have a very profound
effect on overall time to resolve defects. Both regressions
explained only very a small amount of variance in the time
to resolve bugs – 5.0% and 6.6% respectively for UIC and
WIC.

To better understand the phenomena, we broke UIC and
WIC into their constituent parts, terming the numerator,
which represents the actual communication ActualCommU
andActualCommW respectively. The process of dichotimiza-
tion in equation 2 ensures that the denominator, ReqComm,
is identical in both metrics. The results of the regression on
these models is shown in tables 3 and 4.

Under the new regression models, we find that the amount
of required communication is significant and that bugs that
were worked on by individuals with higher levels of required
communication show a lower time to resolution. We note
that while ReqComm is unbounded, in our data it has a
maximum value of 13 – indicating a possible reduction of
93% and 90% in the time to resolve the bug in each model.
We also note that ActualCommU increases the time to re-
solve a bug, while ActualCommW has no statistically sig-
nificant relationship with the time to resolve bugs. The fit of
the new models has increased significantly over the original
model, with each model explaining 11% of the variance.

Finally, we explored the possibility of communication over-
load being a main culprit. In such a model, we include not
only ActualCommU , but ActualCommU2, as shown in ta-
ble 5. If it is the case that a small amount of communi-
cation is beneficial, but excessive communication is harm-
ful, then both ActualCommU and ActualCommU2 would
be significant with negative and positive coefficients respec-
tively. While the coeffecients point in the correct direction,
ActualCommU is far from significant. Thus, we cannot con-
clude that the effect of communication differs based on the
volume of communication.

4. DISCUSSION
These preliminary findings ran counter to our own expec-

tations, but appear to be robust with multiple different data

Table 5: Analyzing the Squared Effect of Actual
Communication in UIC

Variable Estimate Std Err P
Intercept 2.837 0.152 <.001

NumDevs 1.581 0.093 <.001
ActualCommU -0.065 0.064 0.308
ActualCommU2 0.014 0.007 0.033

ReqComm -0.303 0.022 <.001

sets from within the community. In particular, we note that
while our expectation was that higher individual congruence
would lead to higher performance, and this was true, we
found that when broken into its constituent parts the more
instances of required communication, ReqComm, an indi-
vidual had the faster their bugs would get resolved, while the
more individuals they communicated with, ActualCommU ,
the slower their time to resolve bugs. Furthermore, we
found no difference between the impact moderate and large
amounts of communication on overall performance.

There should be more examination on what the meaning
of a high score of ReqComm means for an individual devel-
oper and how it compares to more traditional social network
metrics such as centrality, degree, and betweenness. In the
current implementation of the algorithms, an individual can
have a high value of ReqComm from a variety of different
cause. For example, a user who modified only a single file
that happened to be a core system library would have a high
number of coordination instances. Likewise, an individual
who modified a number of smaller files in pairs could also
have a high value. These are two very different scenarios
and should be examined as they may have dramatically im-
plications.

From an algorithmic point of view, we make a particular
note regarding the derivation of WIC: a dichotomized ver-
sion of CA was used, which discards any meaning regarding
the frequency of the communication – a situation that is no
different from UIC and the original STC metric. This is a
shortcoming in the metric as it is likely that links that have
higher coordination requirements, as shown by a high value
for CR[i, j], will need to have more frequent communication
(i.e. a high value of CA[i, j]). We have intentionally chosen
not to address this issue because of the wide variety of diffi-
culties it brings up in knowing if a communication between
two people was to coordinate some aspect of work or not.
Further work on understanding the context of communica-
tions and identifying such relevant communications would
be highly beneficial for this family of metrics.

Finally, the data for this work differs significantly from
the original work examining STC in that this data examines
teams working on different projects in a widely distributed
Open Source community as opposed to a unified team work-
ing on a single project in a commercial firm. This commu-
nity has a fairly rigid set of work norms that roughly follow
the general pattern for most open source (see Fogel’s work
for more detail[3]) and include large amounts of extra com-
munication on mailing lists and bug trackers while keeping
commits small and rarely breaking the build. In addition,
we note that because of the open nature of our data, some
typical control variables were not readily accessible or mean-
ingful – for example, in an open source community it can be

very difficult to obtain survey data about the experience
level of each developer and the lack of defined roles makes
seniority variables impossible to calculate.

In such cases of massively distributed environments, as
is found in Open Source, there is little doubt that norms
of documentation and communication reduce the amount of
“work” that a developer can complete. However, developer
efforts in communication are key for keeping the project vi-
tal and attracting new talent. Indeed, in such distributed
cases it is likely that those with the highest individualized
congruence have lower productivity when measured in terms
of observable metrics such as lines of code and bug resolu-
tion time, but may be more productive in terms of keeping
the project alive and healthy. If this is the case, the we
must examine the issue of whether or not using such met-
rics is prudent for measuring individual productivity and
what implications that has for STC.

Acknowledgements
This work is funded by the National Science Foundation
IGERT Training Program at Carnegie Mellon University
(DGE-9972762) and the Office of Naval Research.

5. REFERENCES
[1] J. Anvik and G. Murphy. Determining implementation

expertise from bug reports. In Mining Software
Repositories 2007, Minneapolis, MN, USA, May 2007.

[2] M. Cataldo, P. Wagstrom, J. Herbsleb, and K. Carley.
Identification of coordination requirements:
Implications for the design of collaboration and
awareness tools. In 2006 Conference on Computer
Supported Cooperative Work, pages 353–362, Banff,
Alberta, Canada, Nov. 2006. ACM Press.

[3] K. Fogel. Producing Open Source Software. O’Reilly &
Associates, Sebastapol, CA, 2005.

[4] D. German. The gnome project: a case study of open
source, global software development. Software Process:
Improvement and Practice, 8:201–215, Sept. 2004.

[5] G. Valetto, M. Helander, K. Ehrlich, S. Chulani,
M. Wegman, and C. Williams. Using software
repositories to investigate socio-technical congruence in
development projects. In Mining Software Repositories
2007, Minneapolis, MN, USA, May 2007.

