
Decaying Socio-Technical Congruence as a Method to Account for

Architectural Changes

Patrick Wagstrom, James Herbsleb, and Kathleen Carley

Institute for Software Research

School of Computer Science

Carnegie Mellon University

{pwagstro,jdh,carley}@cs.cmu.edu

Abstract

The socio-technical metric (STC) [1,2] relates the

coordination activities on a team to the coordination

requirements generated by the interaction of

dependencies between tasks and assignment of tasks.

In this paper we extend STC to include a decay factor

to account for changes in network structure over time.

We evaluate the changes in a large Open Source

community and find that small amounts of decay

increase the overall explanatory power of the metric

across a broad spectrum of projects and larger

amounts of decay may be beneficial for projects with

large changes in requirements and communication

patterns.

1. Introduction

Functionally, many teams serve as information

processing entities that manage an incoming stream of

information, parsing and delivering the information to

relevant team members and then doing work based on

the combination of new and existing information [3,4].

As the team evolves, ad-hoc communication channels

emerge, allowing information to flow more easily and

easing the coordination difficulties that the team may

face [5,6]. These communication channels often arise

as a response to technical constraints inherent in the

task and the task’s network of dependencies. As these

technical constraints linking components of the task

change, the team must alter their communication

patterns to ensure they can continue to complete their

task efficiently. However, even a small change in the

technical constraints of the system can have potentially

widespread changes on the coordination requirements

of the team, rendering old communication channels

obsolete and forcing the team to develop new channels

for information[7].

While the above statements may be true for almost

any team, they are particularly relevant for Software

Engineering teams, which frequently face additional

challenges. Software engineering projects often are

poorly specified, long lived, and face unforeseen

difficulties.

One important way that software engineering

differentiates itself from traditional engineering is the

long life of the projects and the need to support the

project on changing platforms over long time periods.

While many complex engineering projects, such as the

NASA space shuttle receive incremental updates over

the course of their lifetime, their domain is generally

fixed. A space shuttle is designed to take into account

the forces of earth and space to safely provide transit

for a crew of astronauts. While electronics upgrades

and small advancements in materials may make their

way into refits of the shuttle, it will not be refit to work

on another planet, to move astronauts around the globe,

or to land on the surface of the moon[8].

Software, on the other hand, frequently faces

changing requirements. The operating systems that the

software runs on are constantly being upgraded,

introducing small changes to APIs, program timing,

and the rights allowed to the program. Devices on the

platform also change, sometimes requiring difficult

work-arounds when upgraded versions of the software

are released. New programming languages, libraries,

and even programming paradigms are constantly being

developed that can dramatically improve the program

should project developers and maintainers choose to

update and re-write their code to utilize these libraries.

However, rather than re-writing the program, software

engineers are expected, to a degree, to maintain

compatibility with older legacy systems[9].

While there exists a handful of projects that

developers hand-off after release, the majority of

projects utilize the same team for multiple releases

over a period of years. This paper examines the effects

of STC on long lived software engineering projects to

understand how architectural changes affect the STC

metric. We propose an adaptation to STC calculation

that implements a decay factor in communication and

coordination requirements. We evaluate the metric

against several projects from a single community and

then discuss the larger implications of allowing

communication and networks to decay over time.

2. Socio-Technical Congruence

The Socio-Technical Congruence metric as

proposed by Cataldo et. al. assess the fit of an

organization’s actual coordination to the set of

coordination requirements found in artifacts of the

project [1,2]. In a nutshell, the metric works as

follows:

For a given organization three different networks

are collected in matrix form. The first is a task

assignment network, ��, that maps individuals to tasks

in the organization. Within a software development

organization these tasks may be files, individual

requirements, bug reports, or any other notion of a

work item. Next, a task dependency network, ��, is
collected that maps dependencies between different

tasks. For example if task A requires task B to be

completed before proceeding, an edge would appear in

the network between A and B. Using these networks

matrix multiplications is used to get the coordination

requirements network, ��, between individuals in the
network. This combination of networks in matrix form

is largely based off the model combining relationships

proposed by Carley and Krackhardt in their PCANS

model of interaction [10].

�� � �� � �� � ���
This multiplication is done to get at the sometimes

hidden dependencies between individuals within an

organization. Often times individuals are aware of the

other people working on a component, or those

individuals who have worked on the component in the

past, but they are not aware the way that their work

impacts individuals that work on tasks which are

dependent on their tasks.

The final network collected is a network

representing actual coordination within the

organization, ��. Examples of this network may be

co-attendance at meetings, shared geographic

locations, or archives of email messages. The socio-

technical congruence for the organization is then the

proportion of edges present in �� that are also present
in ��. As the metric does not take into account edge

weights, it is possible to dichotomize all networks such

that edges with positive weights are set to 1 and all

other edges have weights of 0. In such a case, the

following formula can be used to calculate overall

STC.

	
� � ∑
�� � ���
∑ ��

For a single point in time, this formulation is quite

useful, but it loses some usefulness when aggregating

data over a longer period. This is primarily because

over the life of a long-lived project changes in

architecture, team structure, and task dependencies will

begin to accumulate[9]. For example, while Windows

Vista inherits portions of the code from Windows 95

and before, there is little doubt that the dependencies

and the team structure have varied dramatically since

that point. The work necessary to update the code for

changes in architecture is frequently referred to as

refactoring and often causes dramatic changes in the

structure of the code and the social structure of the

team developing the code[11,12].

To account for this, we propose adding a decay

factor to the collected networks ��, ��, and ��. This
factor, �, is scaled between 0 and 1, where 0 indicates
full decay, relying only the current data, and 1

indicates no decay. Thus, at a time period � the
networks may be formulated as follows, where ��, ��,
and �� represent the contribution to the networks only
from time period �.

��� � � �������

�

���

��� � � �������

�

���

��� � � �������

�

���

This addition of a decay factor allows older task

dependencies, task assignments and observed

communications to be slowly removed from the

network over time. By applying the decay factor to all

three networks, it is possible that the value of socio-

technical congruence at each time period can vary

either positively or negatively.

3. Description of Data

To test the viability of STC within a real world

project, it was necessary to locate a large community

with significant history and ample available data. This

was found in the GNOME project, a large Open Source

project that seeks to create a completely free (as in

money cost and liberty) desktop environment for Linux

and Unix-like operating systems[13,14]. One aspect of

GNOME that makes it interesting is that although the

community is working to build a coherent product, the

GNOME desktop environment, functionally it is

comprised of numerous smaller projects that are each

given the freedom to operate relatively independently

from one another[15].

The community is comprised of independent

volunteers, students, and professional software

developers. It has a moderate amount of commercial

support, however commercial firms do not directly

chart the direction of the community. Each project in

the community is allowed to largely govern itself.

There is a small board that coordinates major events in

the community, such as software releases and the

annual conferences.

For this paper, the complete version control history

of the community was collected, spanning from the

start of the project until the end of 2007. In addition a

complete copy of the community’s bug tracker

database was obtained (many thanks to the system

administrators of the GNOME project for their work in

providing this). Finally, archives of project mailing

lists, which are freely available via the World Wide

Web were also downloaded.

One of the largest difficulties with this project is

that there was no uniform sense of identity across

projects in the community. Many developers had

multiple accounts they used for accessing project

source code, different email addresses used for mailing

lists, and still other addresses used to register with the

project bug tracker. As the lead author is active in the

community, this allowed the identities of the 1200

developers who had contributed code directly to the

project source code repository to be resolved, primarily

by hand. Where uncertainty about developer identity

occurred, individuals were validated by spot checking

identities with active members of the community. This

was a very time consuming process that largely was a

result of the historical nature of GNOME. When the

project was founded many of the tools that provide

integrated environments for Open Source project

management were not yet common, so each component

of project management tools was obtained from a

different source and managed using different

tools[5,13,16]. Modern environments such as

Launchpad from Canonical should make this form of

data collection much easier for future Open Source

projects[17].

Because the community operates in a relatively

open manner, any individual with sufficient credentials

is allowed to create a new project with little or no

oversight. This has led to numerous small projects that

are similar to toys or small spaces in which a developer

experiments on new concepts. A filter was applied to

the projects in the community to eliminate such low

activity projects. Projects with more than 1 year of

activity, contributions from 10 or more developers, a

publicly accessible bug tracker, and publicly accessible

mailing lists were selected for analysis.

Each of the networks for the project was generated

as follows. Within the community, the concept of a

task was mapped to individual files in the project

version control system repository. The task

assignment matrix, ��, was generated by examining

the version control system archive for each file adding

an edge between an individual and the file if the

individual had made changes to that file and committed

those changes back to the repository. Task

dependencies between files, ��, were generated

through an examination of logical coupling. If two

files were committed together to the version control

system then an edge was added between those

files[18]. This method that has previously shown to

be useful in the generation of networks for STC

analysis [1,2]. Finally, the actual coordination

network, ��, was generated through an examination of

project mailing lists and bug trackers. Project mailing

lists were broken up by thread and all individuals

posting messages in a thread were connected to one

another. Likewise, all individuals commenting on a

bug were connected to one another, creating cliques for

each conversation. The networks obtained from

mailing lists and bug trackers were then aggregated to

obtain ��.
Small amounts of additional filtering were done on

the data. Commits to the version control system that

touched more than 20 files were discarded as these are

typically housekeeping and maintenance tasks, such as

updating licenses or changing copyrights. Norms

within the community help to ensure that commits

typically touch far fewer files. In addition, all files that

were not source code were removed and not

considered, this includes project documentation, build

scripts, and graphics.

Time slices in the community were set to one month

intervals. The community makes two major releases a

year, in March and September, however the release

data of individual software packages does not

necessarily correspond to these wider community

release dates.

4. Preliminary Validation of STC

Before examining trends in STC by introducing a

decay metric, it was first necessary to validate that

sufficient data was collected to properly calculate STC

for the community and that the same positive effect on

team performance observed by Cataldo et. al. was once

again observed[1]. The dependent variable in these

observations was the time to resolve software defects

on the key projects as measured by the log! of the
number of days the bug was open. Only actual

software defects were analyzed, filtering out requests

for new features, miscategorized issues, and duplicate

bug reports.

For each bug report, several control variables were

collected. Within large scale engineering projects,

frequently adding additional developers to a project

makes the project slower. To address this issue we

tracked the number of developers, "#$%&'(, who
contributed code to the project who also were active on

the bug report. The second control variable collected

for each bug was the number of comments made on the

bug. In the model this variable is called)*$$&"+(.
Bugs that attract many comments are likely to be

difficult or contentious issues within the organization

and may lead to longer resolution times. The final

control variable collected for each project was the

number of people who changed the status of the bug,

,&-+./&*0-&. A bug’s status is its current state in the
bug triaging and fixing process. All bugs begin as

NEW, and then may progress to other states such as

ASSIGNED, RESOLVED, NOTABUG, and

NEEDINFO. A large number of people changing the

status of a bug is a sign that a bug may be complicated

or not properly fixed. A variety of other control

variables were explored based on properties of the data

set, but they were consistent too highly correlated with

the other predictor valuable to prove valuable in the

analysis.

There were 2859 bugs associated with projects for

which STC could be calculated. This data was then

used to build a regression model. The results of this

analysis can be seen in Table 2. The number of

developers and number of comments made on a bug

have no statistical impact on the amount of time it

takes to resolve a bug. This is largely explained by the

lack of variation in these common metrics within the

data set.

Table 2: Preliminary results of STC analysis within the

GNOME community

Variable Estimate Std Error P-Value

Intercept 1.7274 0.1461 <.0001

123�456 0.0990 0.1049 0.346

�73341�6 -0.0153 0.0155 0.323

849�:;47<94 1.1812 0.0679 <.0001

=�� -4.0831 0.6042 <.0001

>!=0.1577, DF=2844, p < 0.0001

The number of people making status changes to the

bug has a great impact on the overall time to resolve

defects. For each additional person who changes the

status of the bug, the expected time to resolve the

defect is expected to slightly more than double. The

final predictor variable, 	
�, also has a negative
coefficient, indicating that higher levels of the team’s

overall socio-technical congruence at the time of the

software defect are associated with shorter times to

resolve software defects. In this data the effect is quite

large, indicating that a team with an STC of 0.5 could

expect to resolve defects in approximately 1/4
th
 the

time of a team with an STC of 0.

Unfortunately, the overall model explains only a

very small amount of the overall variance in the time to

resolve software defects in the community. It was,

however, expected that the overall variance would be

greater and explanatory power less than analysis on

commercial products because of the heavily volunteer

nature of GNOME. Common control variables for the

productivity of software engineers, such as tenure and

education, were not available for the community, nor

are they likely to be easily accessible without a survey

of the developers, which previously have found only

mixed amounts of success in Open Source

communities[19].

Table 1: Summary statistics of regression variables

Variable Min Max Mean Skew Kurtosis

?@AB
�46792��71��34� 0.00 10.00 3.496 0.226 1.529

123�456 1.00 5.00 1.303 1.855 6.243

�73341�6 1.00 39.00 4.601 3.320 18.666

849�:;47<94 1.00 9.00 1.695 2.093 9.385

=�� 0.00 0.750 0.103 -0.067 1.287

4. Evaluating Decay of Networks in Socio-

Technical Congruence

After validating that there was sufficient data

present from the projects to assess socio-technical

congruence, the decay metric was introduced to the

project networks. For each project the decay level was

varied between 0.80 (high decay) and 1.00 (no decay)

in steps of 0.05. The STC of each project in the

community was calculated at each of the time periods,

producing one curve for each value of STC.

An example of such a curve can be seen in Figure 1.

This curve shows the results for the “Beagle” project, a

desktop search engine similar to Google Desktop

Search written in the object oriented language C#. The

project has consistently enjoyed commercial support

and during the 24 months of observation had a stable

core project development team. Examinations of

project mailing list archives shows that while new

versions of the software were released frequently, there

was never an effort to significantly re-architect the

project.

Figure 1: STC curves of the "Beagle" project. As the

decay is increased, the overall STC of the project

decreases.

This result is in marked contrast to the curves

shown in Figure 2, which depict the STC of the

Rhythmbox project, a music and media player for

GNOME. In contrast to Beagle, Rhythmbox has much

less commercial support. While there is some financial

and development support from RedHat, and developers

from other commercial firms have contributed code to

the project, the project remains largely a volunteer

project. Furthermore, the leadership of the project has

changed hands, this change lead to a redesign of many

of the internal components of the software partially as

a result of changes in the underlying platform

RhythmBox was built on and partly because of lost

knowledge in the project leadership transition.

Figure 2: STC curves of the “RhythmBox” project. As

decay is increased, the resulting change in STC is

much more unpredictable.

Within Beagle, an increase in the decay of the

project led to decreased overall socio-technical

congruence. This is possible when the decay in actual

coordination is faster than the decay in coordination

requirements. For such a drop to occur the

dependencies between tasks in the network (files in the

project) must have been renewed and updated more

frequently than the communication within the project

was updated. From a software development

perspective this means that these dependencies

persisted throughout the project, while the

communication to address those dependencies occurred

earlier in the project and was not renewed later in the

project.

Such a situation is the hallmark of a fairly static

team, once individuals understand many of the

dependencies, there is less of need to continually

discuss the dependencies between files in the

community.

Rhythmbox, on the other hand, exhibits largely

decreasing values of socio-technical congruence with

higher levels of decay until about half way through the

observations, at which point the highest decay curve

begins to increase. Each of the other decay curves then

increases at a point slightly later and to a slightly lesser

degree as the decay becomes less. This is to be

expected as the higher decay models put less emphasis

on more current communication and more emphasis on

communication that occurred long in the past.

5. Evaluation of different decay levels

To examine the overall effect of increasing decay

on communications and requirements in STC,

aggregate statistics were collected for the different

levels of STC across all projects. The results can be

seen in Table 3. Of note is that the maximum is

consistent across all projects because it occurs at the

first time period for a project. The mean gradually

declines indicating that more projects behave like

Beagle than like Rhythmbox, and that in general

applying a decay factor will result in decreased levels

of STC. The data gradually moves from a negative

skew to a positive skew indicating that increasing the

decay within STC pushes the metric lower, however,

high scores may still exist. The kurtosis is also

monotonically increasing, indicating that as decay

increases the scores become slightly more uniform and

the variance comes from extreme points.

The same regression model was again used

changing the STC predictor with each of the different

decay levels. The results can be seen in Table 4

through Table 7.

Table 4: Results of STC regression with 0.95 decay

Variable Estimate Std

Error

P-Value

Intercept 1.8613 0.1461 <.0001

123�456 0.1073 0.1043 0.304

�73341�6 -0.0136 0.0154 0.374

849�:;47<94 1.1722 0.0675 <.0001

=���4�:CD. FG -5.9549 0.6648 <.0001

>!=0.1676, DF=2844, p < 0.0001

Table 5: Results of STC regression with 0.90 decay

Variable Estimate Std

Error

P-Value

Intercept 1.7709 0.1467 <.0001

123�456 0.0943 0.1048 0.368

�73341�6 -0.0158 0.0154 0.308

849�:;47<94 1.1780 0.0678 <.0001

=���4�:CD. FD -5.4628 0.7511 <.0001

>!=0.1598, DF=2844, p < 0.0001

Table 6: Results of STC regression with 0.85 decay

Variable Estimate Std

Error

P-Value

Intercept 1.6095 0.1466 <.0001

123�456 0.0785 0.1053 0.456

�73341�6 -0.0172 0.0155 0.269

849�:;47<94 1.8265 0.0682 <.0001

=���4�:CD. HG -3.3945 0.7538 <.0001

>!=0.1502, DF=2844, p < 0.0001

Table 7: Results of STC regression with 0.80 decay

Variable Estimate Std

Error

P-Value

Intercept 1.6116 0.1470 <.0001

123�456 0.0738 0.1053 0.484

�73341�6 -0.0173 0.0155 0.267

849�:;47<94 1.1825 0.0682 <.0001

=���4�:CD. HD -3.5682 0.7992 <.0001

>!=0.1501, DF=2844, p < 0.0001

When measured by explanatory power of the model,

utilizing a decay of 0.95 or 0.90 both provide slightly

better results than no decay. As the decay increased

beyond 0.90 the overall explanatory power of the

model decreased as the variance in STC decreased and

the variance was increasingly a result of a few outliers.

This indicates that introducing a small decay factor to

STC may prove beneficial to tools and implies that

Table 3: Summary statistics of STC at different decay levels

Variable Min Max Mean Skew Kurtosis

1.00 (no decay) 0.00 0.750 0.1028 -0.067 1.287

0.95 0.00 0.750 0.0935 -0.048 1.406

0.90 0.00 0.750 0.0822 0.059 1.629

0.85 0.00 0.750 0.0792 0.310 1.864

0.80 0.00 0.750 0.0739 0.413 1.995

with a 0.95 decay factor, the strength of older ties is

only 54% as strong as with no decay factor.

The selection of such a decay factor, is not entirely

straightforward. While for the entire community a

decay factor 0.95 produces the best results, this is not

constant across all projects. For the Rhythmbox

project, which experienced a period of leadership

change and re-architecting of the project code,

increasing the amount of decay continues to increase

explanatory power of the model up to and including a

decay factor of 0.80. The Beagle project, on the other

hand, shows the best results when there is no decay

factor applied.

6. Discussion

This paper has proposed the incorporation of a

decay factor into the socio-technical congruence metric

and evaluated the modification on projects within a

large Open Source community. It was found that

across the community the incorporation of such a

decay metric increases the overall explanatory power

of the model to a small degree. However, as a whole

increasing the decay factor beyond 0.95 decreases the

power.

We note that the optimal decay level varies across

projects. Projects that have a stable architecture and

rarely change will likely not need to apply a decay

metric, while projects that undergo a large scale

architectural change will benefit from a much higher

amount of decay. The optimal solution for the

evaluation of STC after an architectural change may

utilize decay as one of many ways to alter the metric.

Additional changes may include giving heavier weight

to periods immediately after the new architecture is

begun or removing all influence from periods before

the rearchitecture process was started.

This finding of implementing a decay factor is most

useful when designing tools that assess the degree to

which team are communicating and fulfilling their

coordination dependencies, such as Tesseract by Sarma

et. al. [20] In particular, the application of decay

seems particularly well suited for monitoring of Open

Source projects or other projects where the monitoring

and analyzing party may not be aware of all of the

decisions being made with regards to project structure.

7. Acknowledgements

This work was supported in part by the National

Science Foundation (IIS-0414698), the IGERT training

program in CASOS (NSF,DGE-9972762), the Office

of Naval Research under Dynamic Network Analysis

program (N00014-02-1-0973, the Air Force Office of

Sponsored Research (MURI: Cultural Modeling of the

Adversary, 600322) for research in the area of dynamic

network analysis. Additional support was provided by

CASOS - the center for Computational Analysis of

Social and Organizational Systems at Carnegie Mellon

University. The views and conclusions contained in

this document are those of the authors and should not

be interpreted as representing the official policies,

either expressed or implied, of the National Science

Foundation, the Office of Naval Research, The Army

Research Lab (CTA: 20002504), or the Army Research

Institute (W91WAW07C0063).

8. References

[1] M. Cataldo, P. Wagstrom, J. Herbsleb, and K.

Carley, “Identification of Coordination

Requirements: Implications for the Design of

Collaboration and Awareness Tools,”

Proceedings of the 2006 20th anniversary

conference on Computer supported cooperative

work, Banff, Alberta, Canada: ACM Press,

2006, pp. 353-362.

[2] M. Cataldo, J.D. Herbsleb, and K.M. Carley,

“Socio-technical congruence: a framework for

assessing the impact of technical and work

dependencies on software development

productivity,” Proceedings of the Second ACM-

IEEE international symposium on Empirical

software engineering and measurement,

Kaiserslautern, Germany: ACM, 2008, pp. 2-11.

[3] J. March and H. Simon, Organizations, New

York, NY: Wiley, 1958.

[4] J.R. Galbraith, Designing Complex Organizations,

Addison Wesley, 1973.

[5] Y. Yamauchi, M. Yokozawa, T. Shinohara, and T.

Ishida, “Collaboration with Lean Media: how

open-source software succeeds,” Proceedings of

the 2000 ACM conference on Computer

supported cooperative work, Philadelphia,

Pennsylvania, United States: ACM, 2000, pp.

329-338.

[6] R.M. Henderson and K.B. Clark, “Architectural

Innovation: The Reconfiguration of Existing

Product Technologies and the Failure of

Established Firms ,” Administrative Science

Quarterly, vol. 35, Mar. 1990, pp. 9-30.

[7] H. Mintzberg, The Structuring of Organizations,

Prentice Hall, 1979.

[8] T. Mens, M. Wermelinger, S. Ducasse, S.

Demeyer, R. Hirschfeld, and M. Jazayeri,

“Challenges in software evolution,” Principles of

Software Evolution, Eighth International

Workshop on, 2005, pp. 13-22.

[9] R.C. Seacord, D. Plakosh, and G.A. Lewis,

Modernizing Legacy Systems: Software

Technologies, Engineering Processes, and

Business Practices, Addison-Wesley

Professional, 2003.

[10] K. Carley and D. Krackhardt, “A PCANS model

of structure in organization,” 1998 International

Symposium on Command and Control Research,

1998.

[11] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D.

Roberts, Refactoring: Improving the Design of

Existing Code, Addison-Wesley Professional,

1999.

[12] T. Mens and T. Tourwe, “A survey of software

refactoring,” Software Engineering, IEEE

Transactions on, vol. 30, 2004, pp. 126-139.

[13] D. German, “Software Engineering Practices in

the GNOME Project,” Perspectives on Free and

Open Source Software, J. Feller, B. Fitzgerald,

S.A. Hissam, K.R. Lakhani, and M. Cusumano,

eds., MIT Press, 2005, pp. 211-226.

[14] S. Koch and G. Schneider, “Effort, co-operation

and co-ordination in an open source software

project: GNOME,” Information Systems Journal,

vol. 12, Jan. 2002, pp. 27-42.

[15] D. German, “The GNOME project: a case study

of open source, global software development,”

Software Process: Improvement and Practice,

vol. 8, Sep. 2004, pp. 201-215.

[16] T. Halloran and W. Scherlis, “High Quality and

Open Source Practices,” 2nd Workshop on Open

Source Software Engineering, Orlando, Florida:

2002.

[17] Canonical, Ltd, “Launchpad.”

[18] H. Gall, K. Hajek, and M. Jazayeri, “Detection of

Logical Coupling Based on Product Release

History,” 14th IEEE International Conference

on Software Maintenance, IEEE Press, 1998.

[19] R.A. Ghosh, R. Glott, B. Krieger, and G. Robles,

Free/Libre and Open Source Software: Survey

and Study, International Institute of Infonomics

University of Maastricht, The Netherlands, 2002.

[20] A. Sarma, L. Maccherone, P. Wagstrom, and J.

Herbsleb, “Tesseract: Interactive Visual

Exploration of Socio-Technical Relationships in

Software Development,” Proceedings of the

2009 International Conference on Software

Engineering, Vancouver, BC: 2009.

