
Decaying Socio-Technical Congruence as a Method to Account for 

Architectural Changes 
 

 

Patrick Wagstrom, James Herbsleb, and Kathleen Carley 

Institute for Software Research 

School of Computer Science 

Carnegie Mellon University 

{pwagstro,jdh,carley}@cs.cmu.edu 

 

 

Abstract 
 

The socio-technical metric (STC) [1,2] relates the 

coordination activities on a team to the coordination 

requirements generated by the interaction of 

dependencies between tasks and assignment of tasks. 

In this paper we extend STC to include a decay factor 

to account for changes in network structure over time.  

We evaluate the changes in a large Open Source 

community and find that small amounts of decay 

increase the overall explanatory power of the metric 

across a broad spectrum of projects and larger 

amounts of decay may be beneficial for projects with 

large changes in requirements and communication 

patterns. 

 

1. Introduction 
 

Functionally, many teams serve as information 

processing entities that manage an incoming stream of 

information, parsing and delivering the information to 

relevant team members and then doing work based on 

the combination of new and existing information [3,4].  

As the team evolves, ad-hoc communication channels 

emerge, allowing information to flow more easily and 

easing the coordination difficulties that the team may 

face [5,6].  These communication channels often arise 

as a response to technical constraints inherent in the 

task and the task’s network of dependencies.  As these 

technical constraints linking components of the task 

change, the team must alter their communication 

patterns to ensure they can continue to complete their 

task efficiently.  However, even a small change in the 

technical constraints of the system can have potentially 

widespread changes on the coordination requirements 

of the team, rendering old communication channels 

obsolete and forcing the team to develop new channels 

for information[7]. 

While the above statements may be true for almost 

any team, they are particularly relevant for Software 

Engineering teams, which frequently face additional 

challenges.  Software engineering projects often are 

poorly specified, long lived, and face unforeseen 

difficulties.   

One important way that software engineering 

differentiates itself from traditional engineering is the 

long life of the projects and the need to support the 

project on changing platforms over long time periods.  

While many complex engineering projects, such as the 

NASA space shuttle receive incremental updates over 

the course of their lifetime, their domain is generally 

fixed.  A space shuttle is designed to take into account 

the forces of earth and space to safely provide transit 

for a crew of astronauts.  While electronics upgrades 

and small advancements in materials may make their 

way into refits of the shuttle, it will not be refit to work 

on another planet, to move astronauts around the globe, 

or to land on the surface of the moon[8]. 

Software, on the other hand, frequently faces 

changing requirements.  The operating systems that the 

software runs on are constantly being upgraded, 

introducing small changes to APIs, program timing, 

and the rights allowed to the program.  Devices on the 

platform also change, sometimes requiring difficult 

work-arounds when upgraded versions of the software 

are released.  New programming languages, libraries, 

and even programming paradigms are constantly being 

developed that can dramatically improve the program 

should project developers and maintainers choose to 

update and re-write their code to utilize these libraries.  

However, rather than re-writing the program, software 

engineers are expected, to a degree, to maintain 

compatibility with older legacy systems[9]. 

While there exists a handful of projects that 

developers hand-off after release, the majority of 

projects utilize the same team for multiple releases 

over a period of years.  This paper examines the effects 



of STC on long lived software engineering projects to 

understand how architectural changes affect the STC 

metric.  We propose an adaptation to STC calculation 

that implements a decay factor in communication and 

coordination requirements.  We evaluate the metric 

against several projects from a single community and 

then discuss the larger implications of allowing 

communication and networks to decay over time. 

 

2. Socio-Technical Congruence 
 

The Socio-Technical Congruence metric as 

proposed by Cataldo et. al. assess the fit of an 

organization’s actual coordination to the set of 

coordination requirements found in artifacts of the 

project [1,2].  In a nutshell, the metric works as 

follows:   

For a given organization three different networks 

are collected in matrix form.  The first is a task 

assignment network, ��, that maps individuals to tasks 

in the organization.  Within a software development 

organization these tasks may be files, individual 

requirements, bug reports, or any other notion of a 

work item.  Next, a task dependency network, ��, is 
collected that maps dependencies between different 

tasks.  For example if task A requires task B to be 

completed before proceeding, an edge would appear in 

the network between A and B.  Using these networks 

matrix multiplications is used to get the coordination 

requirements network, ��, between individuals in the 
network.  This combination of networks in matrix form 

is largely based off the model combining relationships 

proposed by Carley and Krackhardt in their PCANS 

model of interaction [10]. 
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This multiplication is done to get at the sometimes 

hidden dependencies between individuals within an 

organization.  Often times individuals are aware of the 

other people working on a component, or those 

individuals who have worked on the component in the 

past, but they are not aware the way that their work 

impacts individuals that work on tasks which are 

dependent on their tasks. 

The final network collected is a network 

representing actual coordination within the 

organization, ��.  Examples of this network may be 

co-attendance at meetings, shared geographic 

locations, or archives of email messages.  The socio-

technical congruence for the organization is then the 

proportion of edges present in ��  that are also present 
in ��.  As the metric does not take into account edge 

weights, it is possible to dichotomize all networks such 

that edges with positive weights are set to 1 and all 

other edges have weights of 0.  In such a case, the 

following formula can be used to calculate overall 

STC. 
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For a single point in time, this formulation is quite 

useful, but it loses some usefulness when aggregating 

data over a longer period.  This is primarily because 

over the life of a long-lived project changes in 

architecture, team structure, and task dependencies will 

begin to accumulate[9].  For example, while Windows 

Vista inherits portions of the code from Windows 95 

and before, there is little doubt that the dependencies 

and the team structure have varied dramatically since 

that point.  The work necessary to update the code for 

changes in architecture is frequently referred to as 

refactoring and often causes dramatic changes in the 

structure of the code and the social structure of the 

team developing the code[11,12]. 

To account for this, we propose adding a decay 

factor to the collected networks  ��, ��, and ��.  This 
factor, �, is scaled between 0 and 1, where 0 indicates 
full decay, relying only the current data, and 1 

indicates no decay.  Thus, at a time period � the 
networks may be formulated as follows, where ��, ��, 
and  �� represent the contribution to the networks only 
from time period �. 
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This addition of a decay factor allows older task 

dependencies, task assignments and observed 

communications to be slowly removed from the 

network over time.  By applying the decay factor to all 

three networks, it is possible that the value of socio-

technical congruence at each time period can vary 

either positively or negatively. 

 

3. Description of Data 
 

To test the viability of STC within a real world 

project, it was necessary to locate a large community 

with significant history and ample available data.  This 

was found in the GNOME project, a large Open Source 

project that seeks to create a completely free (as in 

money cost and liberty) desktop environment for Linux 

and Unix-like operating systems[13,14].  One aspect of 

GNOME that makes it interesting is that although the 



community is working to build a coherent product, the 

GNOME desktop environment, functionally it is 

comprised of numerous smaller projects that are each 

given the freedom to operate relatively independently 

from one another[15]. 

The community is comprised of independent 

volunteers, students, and professional software 

developers.  It has a moderate amount of commercial 

support, however commercial firms do not directly 

chart the direction of the community.  Each project in 

the community is allowed to largely govern itself. 

There is a small board that coordinates major events in 

the community, such as software releases and the 

annual conferences. 

For this paper, the complete version control history 

of the community was collected, spanning from the 

start of the project until the end of 2007.  In addition a 

complete copy of the community’s bug tracker 

database was obtained (many thanks to the system 

administrators of the GNOME project for their work in 

providing this).  Finally, archives of project mailing 

lists, which are freely available via the World Wide 

Web were also downloaded. 

One of the largest difficulties with this project is 

that there was no uniform sense of identity across 

projects in the community.  Many developers had 

multiple accounts they used for accessing project 

source code, different email addresses used for mailing 

lists, and still other addresses used to register with the 

project bug tracker.  As the lead author is active in the 

community, this allowed the identities of the 1200 

developers who had contributed code directly to the 

project source code repository to be resolved, primarily 

by hand.  Where uncertainty about developer identity 

occurred, individuals were validated by spot checking 

identities with active members of the community.  This 

was a very time consuming process that largely was a 

result of the historical nature of GNOME.  When the 

project was founded many of the tools that provide 

integrated environments for Open Source project 

management were not yet common, so each component 

of project management tools was obtained from a 

different source and managed using different 

tools[5,13,16].  Modern environments such as 

Launchpad from Canonical should make this form of 

data collection much easier for future Open Source 

projects[17]. 

Because the community operates in a relatively 

open manner, any individual with sufficient credentials 

is allowed to create a new project with little or no 

oversight.  This has led to numerous small projects that 

are similar to toys or small spaces in which a developer 

experiments on new concepts.  A filter was applied to 

the projects in the community to eliminate such low 

activity projects.  Projects with more than 1 year of 

activity, contributions from 10 or more developers, a 

publicly accessible bug tracker, and publicly accessible 

mailing lists were selected for analysis. 

Each of the networks for the project was generated 

as follows.  Within the community, the concept of a 

task was mapped to individual files in the project 

version control system repository.  The task 

assignment matrix,  ��, was generated by examining 

the version control system archive for each file adding 

an edge between an individual and the file if the 

individual had made changes to that file and committed 

those changes back to the repository.  Task 

dependencies between files, ��, were generated 

through an examination of logical coupling.  If two 

files were committed together to the version control 

system then an edge was added between those 

files[18].   This method that has previously shown to 

be useful in the generation of networks for STC 

analysis [1,2].  Finally, the actual coordination 

network, ��, was generated through an examination of 

project mailing lists and bug trackers.  Project mailing 

lists were broken up by thread and all individuals 

posting messages in a thread were connected to one 

another.  Likewise, all individuals commenting on a 

bug were connected to one another, creating cliques for 

each conversation.  The networks obtained from 

mailing lists and bug trackers were then aggregated to 

obtain ��. 
Small amounts of additional filtering were done on 

the data.  Commits to the version control system that 

touched more than 20 files were discarded as these are 

typically housekeeping and maintenance tasks, such as 

updating licenses or changing copyrights.  Norms 

within the community help to ensure that commits 

typically touch far fewer files.  In addition, all files that 

were not source code were removed and not 

considered, this includes project documentation, build 

scripts, and graphics. 

Time slices in the community were set to one month 

intervals.  The community makes two major releases a 

year, in March and September, however the release 

data of individual software packages does not 

necessarily correspond to these wider community 

release dates. 

 

4. Preliminary Validation of STC 
 

Before examining trends in STC by introducing a 

decay metric, it was first necessary to validate that 

sufficient data was collected to properly calculate STC 

for the community and that the same positive effect on 

team performance observed by Cataldo et. al. was once 

again observed[1].  The dependent variable in these 

observations was the time to resolve software defects 



on the key projects as measured by the log!   of the 
number of days the bug was open.   Only actual 

software defects were analyzed, filtering out requests 

for new features, miscategorized issues, and duplicate 

bug reports. 

For each bug report, several control variables were 

collected.  Within large scale engineering projects, 

frequently adding additional developers to a project 

makes the project slower.  To address this issue we 

tracked the number of developers, "#$%&'(, who 
contributed code to the project who also were active on 

the bug report.  The second control variable collected 

for each bug was the number of comments made on the 

bug.  In the model this variable is called )*$$&"+(.  
Bugs that attract many comments are likely to be 

difficult or contentious issues within the organization 

and may lead to longer resolution times.  The final 

control variable collected for each project was the 

number of people who changed the status of the bug, 

,&-+./&*0-&.  A bug’s status is its current state in the 
bug triaging and fixing process.  All bugs begin as 

NEW, and then may progress to other states such as 

ASSIGNED, RESOLVED, NOTABUG, and 

NEEDINFO.  A large number of people changing the 

status of a bug is a sign that a bug may be complicated 

or not properly fixed.  A variety of other control 

variables were explored based on properties of the data 

set, but they were consistent too highly correlated with 

the other predictor valuable to prove valuable in the 

analysis. 

There were 2859 bugs associated with projects for 

which STC could be calculated.  This data was then 

used to build a regression model. The results of this 

analysis can be seen in Table 2. The number of 

developers and number of comments made on a bug 

have no statistical impact on the amount of time it 

takes to resolve a bug.  This is largely explained by the 

lack of variation in these common metrics within the 

data set.   

 

 

 

Table 2: Preliminary results of STC analysis within the 

GNOME community 

Variable Estimate Std Error P-Value 

Intercept 1.7274 0.1461 <.0001 

123�456  0.0990 0.1049 0.346 

�73341�6  -0.0153 0.0155 0.323 

849�:;47<94  1.1812 0.0679 <.0001 

=��  -4.0831 0.6042 <.0001 

>!=0.1577, DF=2844, p < 0.0001 
 

The number of people making status changes to the 

bug has a great impact on the overall time to resolve 

defects.  For each additional person who changes the 

status of the bug, the expected time to resolve the 

defect is expected to slightly more than double.  The 

final predictor variable, 	
�, also has a negative 
coefficient, indicating that higher levels of the team’s 

overall socio-technical congruence at the time of the 

software defect are associated with shorter times to 

resolve software defects.  In this data the effect is quite 

large, indicating that a team with an STC of 0.5 could 

expect to resolve defects in approximately 1/4
th
 the 

time of a team with an STC of 0. 

Unfortunately, the overall model explains only a 

very small amount of the overall variance in the time to 

resolve software defects in the community.  It was, 

however, expected that the overall variance would be 

greater and explanatory power less than analysis on 

commercial products because of the heavily volunteer 

nature of GNOME.  Common control variables for the 

productivity of software engineers, such as tenure and 

education, were not available for the community, nor 

are they likely to be easily accessible without a survey 

of the developers, which previously have found only 

mixed amounts of success in Open Source 

communities[19]. 

 

 

 

Table 1: Summary statistics of regression variables 

Variable Min Max Mean Skew Kurtosis 

?@AB
�46792��71��34�  0.00 10.00 3.496 0.226 1.529 

123�456  1.00 5.00 1.303 1.855 6.243 

�73341�6  1.00 39.00 4.601 3.320 18.666 

849�:;47<94  1.00 9.00 1.695 2.093 9.385 

=��  0.00 0.750 0.103 -0.067 1.287 

   

 



4. Evaluating Decay of Networks in Socio-

Technical Congruence 
 

After validating that there was sufficient data 

present from the projects to assess socio-technical 

congruence, the decay metric was introduced to the 

project networks.  For each project the decay level was 

varied between 0.80 (high decay) and 1.00 (no decay) 

in steps of 0.05.  The STC of each project in the 

community was calculated at each of the time periods, 

producing one curve for each value of STC. 

An example of such a curve can be seen in Figure 1.  

This curve shows the results for the “Beagle” project, a 

desktop search engine similar to Google Desktop 

Search written in the object oriented language C#.  The 

project has consistently enjoyed commercial support 

and during the 24 months of observation had a stable 

core project development team.  Examinations of 

project mailing list archives shows that while new 

versions of the software were released frequently, there 

was never an effort to significantly re-architect the 

project. 

 

 
Figure 1: STC curves of the "Beagle" project.  As the 

decay is increased, the overall STC of the project 

decreases. 

This result is in marked contrast to the curves 

shown in Figure 2, which depict the STC of the 

Rhythmbox project, a music and media player for 

GNOME.  In contrast to Beagle, Rhythmbox has much 

less commercial support.  While there is some financial 

and development support from RedHat, and developers 

from other commercial firms have contributed code to 

the project, the project remains largely a volunteer 

project.  Furthermore, the leadership of the project has 

changed hands, this change lead to a redesign of many 

of the internal components of the software partially as 

a result of changes in the underlying platform 

RhythmBox was built on and partly because of lost 

knowledge in the project leadership transition. 

 

 
Figure 2: STC curves of the “RhythmBox” project.  As 

decay is increased, the resulting change in STC is 

much more unpredictable. 

Within Beagle, an increase in the decay of the 

project led to decreased overall socio-technical 

congruence.  This is possible when the decay in actual 

coordination is faster than the decay in coordination 

requirements.  For such a drop to occur the 

dependencies between tasks in the network (files in the  

project) must have been renewed and updated more 

frequently than the communication within the project 

was updated.  From a software development 

perspective this means that these dependencies 

persisted throughout the project, while the 

communication to address those dependencies occurred 

earlier in the project and was not renewed later in the 

project. 

Such a situation is the hallmark of a fairly static 

team, once individuals understand many of the 

dependencies, there is less of need to continually 

discuss the dependencies between files in the 

community. 

Rhythmbox, on the other hand, exhibits largely 

decreasing values of socio-technical congruence with 

higher levels of decay until about half way through the 

observations, at which point the highest decay curve 



begins to increase.  Each of the other decay curves then 

increases at a point slightly later and to a slightly lesser 

degree as the decay becomes less.  This is to be 

expected as the higher decay models put less emphasis 

on more current communication and more emphasis on 

communication that occurred long in the past. 

 

5. Evaluation of different decay levels 
 

To examine the overall effect of increasing decay 

on communications and requirements in STC, 

aggregate statistics were collected for the different 

levels of STC across all projects.  The results can be 

seen in Table 3.  Of note is that the maximum is 

consistent across all projects because it occurs at the 

first time period for a project.  The mean gradually 

declines indicating that more projects behave like 

Beagle than like Rhythmbox, and that in general 

applying a decay factor will result in decreased levels 

of STC.  The data gradually moves from a negative 

skew to a positive skew indicating that increasing the 

decay within STC pushes the metric lower, however, 

high scores may still exist.  The kurtosis is also 

monotonically increasing, indicating that as decay 

increases the scores become slightly more uniform and 

the variance comes from extreme points. 

 

The same regression model was again used 

changing the STC predictor with each of the different 

decay levels.  The results can be seen in Table 4 

through Table 7. 

 

Table 4: Results of STC regression with 0.95 decay 

Variable Estimate Std 

Error 

P-Value 

Intercept 1.8613 0.1461 <.0001 

123�456  0.1073 0.1043 0.304 

�73341�6  -0.0136 0.0154 0.374 

849�:;47<94  1.1722 0.0675 <.0001 

=���4�:CD. FG  -5.9549 0.6648 <.0001 

>!=0.1676, DF=2844, p < 0.0001 
 

Table 5: Results of STC regression with 0.90 decay 

Variable Estimate Std 

Error 

P-Value 

Intercept 1.7709 0.1467 <.0001 

123�456  0.0943 0.1048 0.368 

�73341�6  -0.0158 0.0154 0.308 

849�:;47<94  1.1780 0.0678 <.0001 

=���4�:CD. FD  -5.4628 0.7511 <.0001 

>!=0.1598, DF=2844, p < 0.0001 
 

 

Table 6: Results of STC regression with 0.85 decay 

Variable Estimate Std 

Error 

P-Value 

Intercept 1.6095 0.1466 <.0001 

123�456  0.0785 0.1053 0.456 

�73341�6  -0.0172 0.0155 0.269 

849�:;47<94  1.8265 0.0682 <.0001 

=���4�:CD. HG  -3.3945 0.7538 <.0001 

>!=0.1502, DF=2844, p < 0.0001 
 

Table 7: Results of STC regression with 0.80 decay 

Variable Estimate Std 

Error 

P-Value 

Intercept 1.6116 0.1470 <.0001 

123�456  0.0738 0.1053 0.484 

�73341�6  -0.0173 0.0155 0.267 

849�:;47<94  1.1825 0.0682 <.0001 

=���4�:CD. HD  -3.5682 0.7992 <.0001 

>!=0.1501, DF=2844, p < 0.0001 
 

When measured by explanatory power of the model, 

utilizing a decay of 0.95 or 0.90 both provide slightly 

better results than no decay.  As the decay increased 

beyond 0.90 the overall explanatory power of the 

model decreased as the variance in STC decreased and 

the variance was increasingly a result of a few outliers. 

This indicates that introducing a small decay factor to 

STC may prove beneficial to tools and implies that 

Table 3: Summary statistics of STC at different decay levels 

Variable Min Max Mean Skew Kurtosis 

1.00 (no decay) 0.00 0.750 0.1028 -0.067 1.287 

0.95 0.00 0.750 0.0935 -0.048 1.406 

0.90 0.00 0.750 0.0822  0.059 1.629 

0.85 0.00 0.750 0.0792  0.310 1.864 

0.80 0.00 0.750 0.0739  0.413 1.995 

   

 



with a 0.95 decay factor, the strength of older ties is 

only 54% as strong as with no decay factor. 

The selection of such a decay factor, is not entirely 

straightforward.  While for the entire community a 

decay factor 0.95 produces the best results, this is not 

constant across all projects.  For the Rhythmbox 

project, which experienced a period of leadership 

change and re-architecting of the project code, 

increasing the amount of decay continues to increase 

explanatory power of the model up to and including a 

decay factor of 0.80.  The Beagle project, on the other 

hand, shows the best results when there is no decay 

factor applied. 

 

6. Discussion 
 

This paper has proposed the incorporation of a 

decay factor into the socio-technical congruence metric 

and evaluated the modification on projects within a 

large Open Source community.  It was found that 

across the community the incorporation of such a 

decay metric increases the overall explanatory power 

of the model to a small degree.  However, as a whole 

increasing the decay factor beyond 0.95 decreases the 

power. 

We note that the optimal decay level varies across 

projects.  Projects that have a stable architecture and 

rarely change will likely not need to apply a decay 

metric, while projects that undergo a large scale 

architectural change will benefit from a much higher 

amount of decay. The optimal solution for the 

evaluation of STC after an architectural change may 

utilize decay as one of many ways to alter the metric.  

Additional changes may include giving heavier weight 

to periods immediately after the new architecture is 

begun or removing all influence from periods before 

the rearchitecture process was started. 

This finding of implementing a decay factor is most 

useful when designing tools that assess the degree to 

which team are communicating and fulfilling their 

coordination dependencies, such as Tesseract by Sarma 

et. al. [20]  In particular, the application of decay 

seems particularly well suited for monitoring of Open 

Source projects or other projects where the monitoring 

and analyzing party may not be aware of all of the 

decisions being made with regards to project structure.   
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