
Engineering Software Engineering Teams
Patrick Wagstrom

IBM TJ Watson Research Center
19 Skyline Dr,

 Hawthorne, NY 10532 USA
pwagstro@us.ibm.com

ABSTRACT
This paper presents novel ideas for understanding how software
engineering teams communicate and coordinate. We utilize these
ideas to understand how these teams should be constructed and
what individuals and managers can do to ensure that teams
perform at high levels. Our view is based on numerous
observations and interactions with enterprise software engineering
teams and influenced by economic models of information sharing.
We propose that neither a fully top-down nor bottom-up approach
is entirely suitable for teams; rather teams must be cognizant of
this issue and work to embrace both models of information flow.
This, in turn, can be facilitated by the role of intercessor who
seeks to properly guide, direct, and curate both top-down and
bottom-up information flows.

Categories and Subject Descriptors
D.2.9 [Software Engineering]: Management – life cycle,
productivity, programming teams, software process models.

General Terms
Management, Human Factors, Economics

Keywords
Software Engineering, Development Teams, Communication,
Coordination, Intercessor

1. INTRODUCTION
Organizational composition and process/workflow design for
software engineering teams is perhaps one of the most difficult
aspects of building and managing a high performance software
engineering organization. In addition to managing the day to day
work of individual developers, project managers must balance the
needs and desires of a wide variety of other individual
stakeholders, both tightly and loosely aligned with the project
[14].

A key aspects of maintaining this balance while building and
running a software engineering team is managing the flow of
information between participants in the team – a task that has
been modeled as the primary requirement of organizations in any
context [2, 4]. In brief, within an information processing view of

an organization the participants in an receive pieces of
information from a variety of different sources (e.g. people,
events, artifacts, personal knowledge, etc) and it is the
responsibility of the individuals that make up the organization to
utilize that information to produce a useful output, typically by
gaining enough information to complete a task [11]. For example,
the combat operations of a military represent only a small portion
of its responsibility. The bulk of the work of the military is in
collecting information to plan operations, manage supply lines,
and coordinate actions in a reliable and reproducible manner as
often exemplified by teams working on the flight decks of aircraft
carriers [13].

The mapping to a software engineering organization can be
performed similarly. While developers are often thought of being
at the core of the organization and a variety of tools exist to
support both planned and ad-hoc interactions between developers,
much of the planning and work within a project is done by non-
developers: product managers, client executives, brand strategists,
financial officers, and other external stakeholders. Among other
tasks these stakeholders process and disseminate information
about customer needs, future market states, financial model, and
process workflows to support the developers coding the software
project.

While there are numerous tools to propagate information through
software engineering environments, such as enhanced IDEs,
project planning software, requirements management tools, and
general purpose wikis and bug trackers, these tools often face
significant challenges that make consumption of their information
useful across the entire team. For example, non-developers rarely
use IDEs and may find bug trackers too specific; requirements
management tools may rationalize decisions for project
specifications, but not provide a way for developers to understand
the context of the decision; and tools that provide real time
notification of developer and stakeholder activities may prove less
useful in the context of a temporally distributed team where all
notifications are seen en masse when the tool is started at the
beginning of the work day.

Strategic design of a software engineering organization to cope
with temporal asynchronicity, divergent stakeholder requirements,
distributed information, and, perhaps most importantly, cross-silo
information flow is a critical need in any software engineering
team with more than a handful of members. In essence, we must
engineer the software engineering team.

This paper first provides an overview of extended stakeholders in
software engineering organizations and how this expanded
organization view is informed by macro-economic theories of
organizations. In section 2 we discuss possible methods for
integrating stakeholders based on the views of both Austrian and
Keynesian economics. In section 3 we address different ways that
tools and processes support these methods of integrating
stakeholders. In section 4 we discuss how these stakeholders

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SSE’11, September 5, 2011, Szeged, Hungary.
Copyright 2011 ACM 1-58113-000-0/00/0010…$10.00.

monitor and process information and finally we close the paper in
section 5.

2. SOFTWARE STAKEHOLDERS AND
MACROECONOMIC THEORIES
In a previous research project we identified a multitude of
stakeholders beyond that of the traditional software engineering
team [14]. These stakeholders include those that are involved with
the daily process of software development, such as project
managers, designers, and support teams, and also those who are
responsible for the business of producing software while lacking
frequent access to the code, such as brand managers, marketing,
legal support, and executive level individuals.

In a follow-up piece of research we examined the communication
pattern within these large software development organizations.
While there were a multitude of issues regarding coordination and
collaboration one overarching issue found was the problem of
private information [8]. In short, this model, which builds on the
Austrian school of economics as typified by Hayek, views
coordination as an issue of multiple independent actors each
possessing a small amount of the knowledge necessary to
complete the task [6]. The independent actors then exchange their
private information to obtain a clear picture of the complete
situation. In economic theory those individuals with the most
information will be able to extract additional rents from the
market. In the software engineering sense, individuals with the
most information will be able to coordinate the best, minimize the
amount of time spent on information seeking, and maximize their
performance. Unlike the purely economic model, in a software
context instead of extracting additional rents, the most successful
individuals are free to contribute to other areas of the project,
improving the overall project.

However, there is an alternative way to think about economics
that is just as easily applied to software engineering teams, that of
Keynesian economics. In brief, Keynesian economics asserts that
relying on private enterprise can often lead to inefficient
allocation of resources and therefore there is a role of a large
contribution from the public sector [7]. In such an environment a
large central agent collects information and provides concrete
direction to the private parties. This minimizes the perceived
inefficient process of knowledge transfer and replaces it with the
possibly inefficient allocation of resources by a central planner.

With respect to the design of a software engineering team a
Keynesian model has a central project manager that serves as the
primary, but non-exclusive, arbiter of information flows while
assigning tasks and working to coordinate developer working on
different modules, project managers, and external stakeholders. In
essence, a Keynesian software engineering organization is top-
down controlled. This is in contrast to an Austrian software
engineering organization that allows control to percolate up from
the bottom of the organization.

Perhaps one of the best known works that addresses these issues
of top-down against bottom-up control of the software
engineering organization is Eric Raymond’s work “The Cathedral
and the Bazaar”, which first put into writing many of the common
practices of Open Source projects in stark contrast to the formal
waterfall engineering process that typified many organizations in
the mid-late 1990’s [12]. While Raymond’s work was largely
based on anecdotal evidence from his own participation in a
medium-sized Open Source project, it had a significant impact on
the state of software engineering as organizations sought to reap

the benefits of Open Source software and the Open Source style
of software development within their organizations.

While the Open Source style of software development empowers
individual developers to exchange information, for example
through the use of public bug trackers, mailing lists, synchronous
chat, and verbose code, it does so at the expense of extended
stakeholders. Indeed, one of the classical models of Open Source
participation proposes that in order to understand a project more
and become more core to its development a developer moves
through successive layers from non-technical communication
mediums such as mailing lists to the technical medium of code
development [9]. While this process may be an efficient method
of transferring private information between stakeholders who are
directly involved with the development process, the role of
external non-developer stakeholders is marginalized by this
process. A non-developer stakeholder who wishes to have impact
on the direction of a project is required to work deep in the code
of the project and collaborate at a level they may not otherwise be
comfortable. For example, an individual who is concerned about
the accessibility features of the software for those with vision or
hearing impairments may be asked to file bugs documenting
where the feature is lacking.

This makes it no small wonder that many projects that are Open
Source or operate using a development strategy similar to the
Open Source process are populated primarily by individuals that
are also developers of the software. Also, it explains why many of
the most successful software projects are those that are designed
for software developers. Indeed, this is made very obvious by dual
user/developer nature of participants in many Open Source
projects [3].

Therefore, while Open Source-like strategies can serve as a base
level mechanism for engineering a software engineering team, we
need to expand the model to include stakeholders who are not
well served by the user/developer duality that is focus of many
Open Source projects.

3. INTEGRATING EXTENDED
STAKEHOLDERS
Perhaps the near polar opposite of the bazaar-like ad hoc
coordination structure of Open Source projects is the realm of
formal process structure and formal process definitions. These
systems are typically designed to ensure that the viewpoints from
all stakeholders are accounted for during the development
process. An example of this is the Integrated Product
Development (IPD) process from IBM [5]. This is a stage/gate
process that requires a product to go through a series of votes at
different points. Each vote is cast be a set of stakeholders who
have an established and explicit role to play and a business
purpose to represent. For example, in addition to individuals
representing development, marketing, sales, support, and a variety
of other roles are also represented at votes to move to the next
stage of a project. While this helps, but does not guarantee, that
the project has heard and addressed the viewpoints and concerns
of the different stakeholders in the project, the rigid stage gate
structure often hinders an organization from acting in an agile
method and requires a level of control and information processing
that may not be possible in all environments, particularly those
that are fast moving.
An approach to allow for stakeholder integration without
overburdensome processes is to provide instrumentation within
tools that allows for dynamic tool composition. One such

approach is collaborative application lifecycle management
(C/ALM) as implemented through the Open Services for
Lifecycle Integration (OSLC) [10]. OSLC seeks to provide a
common framework for tools to share information between them
by, for example, allowing a bug filed on a bug tracker to easily
refer to the original requirement in the requirements document,
the work item which instantiated the requirement, and a build in
which the bug related to the requirement was found. This allows
project managers to integrate all of the tools used by the team and
in some cases even provide for ad-hoc integration of new tools
through standardized interfaces, provided, of course, that the tools
support the current standard and that project members understand
how to make use of the additional information.

One potential downside of C/ALM systems is that interaction is
limited by the features provided in the existing tools – tools that
are typically designed for utilization by a specific class of
stakeholder. Thus, while it allows for some information to be
passed between tools it lacks the ability to adapt to the situations
and pass relevant information to stakeholders who may not use
such a tool – for example, a brand executive who conducts most
of his work in email and word processing documents.
Furthermore, they require that the individuals who implement the
C/ALM layer of each tool and propose the overall integration
understand and anticipate possible use cases of the additional
information, which is likely to be difficult.

4. MONITORING AND PROCESSING
INFORMATION
Thus far we have argued that a software engineering team should
be structured in such a way that each member of the team and
extended stakeholders can easily pass information to those
individuals who need access to the information. As the problem
landscape around software projects is continually changing this
must be done in an agile manner such that dynamic changes in
team structure do not hinder the process. While integration of
tools can assist to a moderate degree, we require a framework that
allows for lightweight coordination outside of tools, especially
when the set of stakeholders is unknown or a stakeholder does not
utilize standard tools.

A further consideration for the organization is to easily facilitate
the monitoring and processing of information as it is passed to
team members. When an individual on a team receives a new
piece of information they can do one of three things with the
information: ignore the information, store the information for
possible future action, or immediately act on the information.
Each of these three options takes time on the part of the individual
and has the potential to distract the individual from their current
work. Therefore it is desirable to pass information in a way that
team members are able to fully consider relevant information and
easily defer or ignore less relevant information.

In an organization that favors bottom-up communication and
coordination there exists few checks to ensure that this
information has been properly processed. Likewise, in an
organization with primarily top-down communication and
coordination while it may be easy for an overseer to ensure the
information is acted on, it can be difficult to ensure that the
information is routed properly to right person.

This strongly hints that information processing organizations
require an individual to guide and curate organizational
knowledge. Working from the top-down they can ensure that the
concerns from external project stakeholders are routed to the
correct core team members. While a bottom-up perspective allows

them to monitor the flow of information to external stakeholders
and direct it to the correct individual. These individuals have
various terms in the literature, such as intercessors, connectors, or
structural holes [1], but they are commonly known by a name
which has almost become derogatory: middle management. In an
effort to avoid unnecessarily loading the term, we will use the
term intercessor for this role.

However, just as not everyone can be a master gardener not
everyone is naturally suited to play the role of intercessor. Indeed
a master gardener must have an innate sense and knowledge of
how the rain and sunlight coming from above interact with the
seeds, soil, and nutrients from below. Likewise, an intercessor in
an organization must be more than someone who knows people
and can direct information to other people in the organization;
they must be someone who has an intimate knowledge of the
needs of the different members of the organization. This is not to
say that an intercessor needs a complete, and possibly
unobtainable, view of all interactions in the organization or that
they must know and understand exactly which pieces of
knowledge individuals have and how they can share them. Rather,
the goal of an intercessor is to direct the information in a software
engineering team to the individual for which it matters most and
will have the greatest impact.

The exact role and actions of an intercessor vary from project to
project. In successful Open Source projects it is common to have
an individual or group of individuals triage incoming bugs. These
individuals serve to bridge the gap between the external
stakeholders of end users and the development teams by
categorizing bugs and requesting additional information where
necessary. In open content environments, such as Wikipedia, an
intercessor may work to curate the content and better organize
articles to meet style guidelines. This allows experienced editors
to focus strictly on the content of articles while providing ample
room for new editors to provide suggestions and augment articles
with minimal fear of disturbing the workflow of experienced
editors.
However, in many commercial projects the role of intercessor
falls to the project manager. While the project manager often can
serve as an intercessor for the project, they are often burdened
with rote tasks such as ensuring that the technical integration
between tasks was successful or estimating the date of project
completion. Introduction of an individual, whether dedicated or
not, to serve as an intercessor to facilitate the knowledge transfer
process could have significant benefits.

5. IMPLICATIONS FOR SOFTWARE
ENGINEERING TEAMS
Assembling and building a high performance software
engineering team involves more than just selecting the “best”
engineers for the job. It involves an in-depth analysis to
understand the complex relationships within the team of software
developers and also the broader set of extended stakeholders who
may contribute to, or otherwise affect change on, the project.
While often times the project manager is tasked with
understanding these relationships we argue that an additional
intercessor role may be more suited to the task.

In future work we seek to further examine and clarify the role of
intercessors in a software organization. We are currently
examining a variety of projects to develop a method to empirically
identify those individuals who serve as intercessors on projects
and quantify the impact of intercessors on long term project
performance.

6. REFERENCES
[1] Burt, R.S. 1992. Structural holes: the social structure of

competition. Harvard University Press.
[2] Cohen, M.D. et al. 1972. A Garbage Can Model of

Organizational Choice. Administrative Science Quarterly.
17, 1 (Mar. 1972), 1-25.

[3] Fitzgerald, B. 2006. The Transformation of Open Source
Software. MIS Quarterly. 30, 3 (Sep. 2006), 587-598.

[4] Galbraith, J. 1974. Organization Design: An Information
Processing View. Interfaces. 4, 5 (May. 1974), 28-36.

[5] Grzinich, J.C. et al. 1997. Implementation of an integrated
product development process for systems. Innovation in
Technology Management - The Key to Global Leadership.
PICMET ’97: Portland International Conference on
Management and Technology (Jul. 1997), 427-430.

[6] Hayek, F.A. 1945. The Use of Knowledge in Society. The
American Economic Review. 35, 4 (1945), 519-530.

[7] Keynes, J.M. 1936. The General Theory of Employment,
Interest and Money. Palgrave Macmillan.

[8] Krein, J.L. et al. 2011. The problem of private information in
large software organizations. Proceedings of the 2011
International Conference on Software and Systems Process -
ICSSP ’11 (Waikiki, Honolulu, HI, USA, 2011), 218.

[9] von Krogh, G. et al. 2003. Community, joining, and
specialization in open source software innovation: a case
study. Research Policy. 32, 7 (Jul. 2003), 1217-1241.

[10] Open Services for Lifecycle Collaboration: http://open-
services.net/. Accessed: 2011-06-23.

[11] Radner, R. 1993. The Organization of Decentralized
Information Processing. Econometrica. 61, 5 (1993), 1109-
1146.

[12] Raymond, E.S. 1999. The Cathedral and the Bazaar.
O’Reilly & Associates.

[13] Weick, K.E. and Roberts, K.H. 1993. Collective Mind in
Organizations: Heedful Interrelating on Flight Decks.
Administrative Science Quarterly. 38, 3 (Sep. 1993), 357-
381.

[14] Williams, C. et al. 2010. Supporting enterprise stakeholders
in software projects. Proceedings of the 2010 ICSE
Workshop on Cooperative and Human Aspects of Software
Engineering (Cape Town, South Africa, 2010), 109–112.

